| 深度学习模型中不同激活函数的性能分析 | |
| 所属分类:技术论文 | |
| 上传者:wwei | |
| 文档大小:6176 K | |
| 标签: 卷积神经网络 激活函数 性能分析 | |
| 所需积分:0分积分不够怎么办? | |
| 文档介绍:近年来,人们为处理众多问题引入了各种类型的神经网络,神经网络取得了巨大的发展。任何神经网络使用的层次结构是线性和非线性函数的组合,其中最常见的非线性层是激活函数,如Logistic Sigmoid、Tanh、ReLU、ELU、Swish和Mish。对深度学习神经网络中的激活函数进行了介绍,并对不同激活函数的输出范围、单调性、平滑性等特点进行了分析。通过在数据集上测试,对现在使用频率较高的激活函数进行了性能测试。对激活函数的分析将有助于进一步地在模型设计中进行选择。 | |
| 现在下载 | |
| VIP会员,AET专家下载不扣分;重复下载不扣分,本人上传资源不扣分。 | |
Copyright © 2005-2024 华北计算机系统工程研究所版权所有 京ICP备10017138号-2