《电子技术应用》
您所在的位置:首页 > 可编程逻辑 > 设计应用 > 基于改进UNet的沥青道路缺陷检测系统的研究与实现
基于改进UNet的沥青道路缺陷检测系统的研究与实现
电子技术应用
韩德强,张洪瑞,杨淇善
北京工业大学 计算机学院
摘要: 针对道路缺陷检测中传统方法泛化能力低、易受环境干扰,以及深度学习模型部署在计算平台时存在的高功耗、低速度等问题,提出一种基于低功耗FPGA平台的语义分割模型的加速与部署策略。首先,构建包含道路裂缝与坑洞的多源数据集,通过数据增强技术平衡样本分布;其次,针对UNet模型的特征提取网络与上采样网络分别进行通道裁剪,并结合量化技术将模型权重从FP32压缩至INT8,进一步降低计算量;最后,利用Vitis AI工具链完成模型量化与编译,部署至FPGA平台,充分发挥其并行计算能力。实验结果表明,优化后的模型在保证平均交并比(MIoU)损失小于5%的前提下,推理速度达到了17 ms,模型参数量与计算量大幅度降低,并且功耗显著降低。该方法在边缘端实现了高效、低功耗的道路缺陷检测,为沥青道路自动化养护评估提供了可行方案。
中图分类号:TP183 文献标志码:A DOI: 10.16157/j.issn.0258-7998.256454
中文引用格式: 韩德强,张洪瑞,杨淇善. 基于改进UNet的沥青道路缺陷检测系统的研究与实现[J]. 电子技术应用,2025,51(11):1-9.
英文引用格式: Han Deqiang,Zhang Hongrui,Yang Qishan. Research and implementation of an asphalt road defect detection system based on improved UNet[J]. Application of Electronic Technique,2025,51(11):1-9.
Research and implementation of an asphalt road defect detection system based on improved UNet
Han Deqiang,Zhang Hongrui,Yang Qishan
School of Computer Science,Beijing University of Technology
Abstract: Aiming at the problems such as the low generalization ability of traditional methods in road defect detection, which are vulnerable to environmental interference, and the high power consumption and low speed when deploying deep learning models on computing platforms, an acceleration and deployment strategy for the semantic segmentation model based on a low-power FPGA (Field-Programmable Gate Array) platform is proposed. Firstly, a multi-source dataset containing road cracks and potholes is constructed, and data augmentation techniques are used to balance the sample distribution. Secondly, channel pruning is carried out separately for the feature extraction network and the upsampling network of the UNet model. Combined with the quantization technique, the model weights are compressed from FP32 (32-bit floating-point) to INT8 (8-bit integer), further reducing the computational load. Finally, the Vitis AI toolchain is utilized to complete the model quantization and compilation, and the model is deployed to the FPGA platform to fully exert its parallel computing capability. The experimental results show that, on the premise of ensuring that the loss of the mean intersection over union (MIoU) is less than 5%, the inference speed of the optimized model reaches 17 ms. The number of model parameters and the computational load are significantly reduced, and the power consumption is remarkably decreased. This method achieves efficient and low-power road defect detection at the edge side, providing a feasible solution for the automated maintenance evaluation of asphalt roads.
Key words : road defect detection;semantic segmentation;model compression;FPGA model deployment

引言

随着国家高速公路建设的快速发展,我国的道路总里程在不断地增加,同时也带来了养护成本不断提高的问题。据交通运输部门的官方数据统计,2022年我国公路养护总里程增长至535.01万公里,相比于2015年的446.56万公里增长迅速,其占公路总里程也由2015年的97.60%增长至2022年的99.90%[1]。目前,中国公路网络已基本形成,主要道路也由水泥路变为了沥青道路,然而大规模建设后必然带来繁重的养护任务,随着国家对公路养护体制改革的逐步深入,我国公路养护已由传统的“抢修时代”过渡到“全面养护时代”[2]。根据交通运输部规划战略介绍,“十三五”期间我国公路建设需求将逐步下降,对道路养护的需求将大大的提高[3]。

公路是人们日常生活中经常要使用到的基础设施,使用量大必然面临着损坏的问题。公路损坏的原因是多方面的,从自然因素到货车超载、出现小问题时维护不及时等都加速了公路的损坏[4]。公路路面由于各种原因形成的裂缝、坑槽、塌陷等病害都严重影响着道路的安全[5]。然而,传统的道路质量评估通常是由人工进行检测,这种方法稳定性差、速度慢,还存在漏检与误检的问题,尤其在人工检测的过程中普遍还需要对道路进行封闭,这可能会造成道路的拥堵,影响交通秩序[6]。所以,如何对道路上的病害与缺陷进行自动化的检测成为当前重要的研究课题。


本文详细内容请下载:

http://www.chinaaet.com/resource/share/2000006833


作者信息:

韩德强,张洪瑞,杨淇善

(北京工业大学 计算机学院,北京 100124)


subscribe.jpg

此内容为AET网站原创,未经授权禁止转载。