《电子技术应用》
您所在的位置:首页 > 电源技术 > 设计应用 > 在不使用精密电阻的情况下产生负精密基准电压
在不使用精密电阻的情况下产生负精密基准电压
ADI
摘要: 从正基准电压产生负基准电压的传统方法只用反相运算放大器,这种方法需用两个精密匹配的电阻。如果匹配有误差,则最终输出也会产生误差。利用本文所述电路,无需用精密电阻即可产生一个负精密基准电压,从而以更少的元件提供更高的精度。
Abstract:
Key words :

电路功能与优势
  从正基准电压产生负基准电压的传统方法只用反相运算放大器,这种方法需用两个精密匹配的电阻。如果匹配有误差,则最终输出也会产生误差。利用本文所述电路,无需用精密电阻即可产生一个负精密基准电压,从而以更少的元件提供更高的精度。
 
电路描述
  该电路采用1.25 V高精度串行基准电压源ADR127和低噪声、低失真、低失调电压运算放大器AD8603。ADR127提供高精度1.25 V输出。AD8603是理想的互补产品,功耗极低,具有出色的电源抑制比(PSRR),并且能采用低至1.8 V的电源电压工作。本电路中,容许的最低电源电压为3 V ( ±1.5 V),使基准电压源和运算放大器均保持足够的裕量。
 
  请注意,基准电压源ADR127为浮地的,其输入连至+VDD电源,输出连至AD8603的反相输入(通过1 kΩ隔离电阻),GND引脚则连至AD8603的输出。(如果ADR127 GND引脚连至实际电路板的接地层,则该电路将不能正常工作。)在此配置中,ADR127充当1.25 V电压源,连接在运算放大器的反馈环路内。负反馈迫使运算放大器输出–1.25 V电压。运算放大器的输入失调电压引起的误差以及基准电压源本身引起的误差构成输出电压的全部误差。流经1 kΩ电阻的偏置电流所引起的误差可忽略不计,因为运算放大器为CMOS,其输入偏置电流极低。因此,如果负电源电压接近基准电压输出,则所选的运算放大器必须具有低失调电压和轨到轨输出。


图1.可产生负1.25 V基准电压的电路


  为使本电路正常工作,必须考虑与基准电压源和运算放大器相关的裕量问题。VDD电源电压必须足够大才能满足基准电压源的裕量要求。ADR127要求电源电压裕量至少为1.45 V (VIN – VOUT),因此VDD至少应为1.5 V(提供50 mV裕量)。对负电源的要求取决于运算放大器输出级的裕量要求。AD8603具有轨到轨输出级,但即便如此,本电路也应当至少提供数百毫伏的输出裕量。AD8603必须输出–1.25 V,因此至少应使用–1.5 V的VSS,以提供250 mV输出裕量。只要裕量要求得到满足,则可以使用±1.5 V至±2.5 V范围内的任何电源电压。AD8603的额定电源电压为5 V,绝对最大电源电压为6 V或±3 V(使用对称电源时)。
 
  0.1 μF电容对其输入与输出引脚之间的基准电压源进行去耦。1 kΩ电阻将该电容与运算放大器的反相输入隔离。应将一个0.1 μF低电感陶瓷去耦电容(图中未显示)与VDD相连,并使其非常靠近这两个IC。多数情况下,运算放大器的最终输出(–VREF)将被深度去耦,这就要求所选的运算放大器在处理较大的容性负载时必须保持稳定。典型的去耦网络由一个1 μF至10 μF电解电容和一个0.1 μF低电感陶瓷MLCC型电容并联构成。
 
常见变化
  经验证,采用图中所示的元件值,该电路能够稳定地工作,并具有良好的精度。此配置还可以采用ADI公司的其它基准电压源和精密运算放大器,形成具有其它合适值的负基准电压。
 
  选择基准电压源与放大器组合时,切勿违背基准电压源的电源电压裕量要求(VIN – VOUT)。由于基准电压VOUT = 0,因此+VDD的最小值必须等于或大于电源电压裕量。例如,要利用5 V精密基准电压源ADR365产生–5 V基准电压,+VDD至少应为5.3 V,因为ADR365的电源电压裕量要求为300 mV。放大器必须在其输出端提供–5 V输出,因此对于本例,16 V、低噪声、精密、轨到轨运算放大器AD8663将是明智的选择。VSS应设置为–5.5 V(提供0.5 V负输出裕量),因为AD8663的电源电压范围为16 V,VDD可以为5.3 V至10.5 V范围内的任何值。多数情况下,电源是对称的,因此VDD = +5.5 V且VSS = –5.5 V将是不错的选择。
 
  ADR121与适合的运算放大器一起使用,可以产生–2.5 V基准电压。由于运算放大器必须输出–2.5 V电压,因此至少应使用–2.8 V的VSS(假设存在轨到轨输出级)。VDD至少必须为+0.3 V,才能满足ADR121的最小VIN – VOUT要求。如果使用AD8603,则VDD不应高于+2.2 V,使AD8603的总电源电压不超过5 V。如果要求用对称的2.8 V电源或更高电源(例如±5 V),则必须选用电源电压更高的运算放大器。
 
进一步阅读
  Jung, Walter G. 2002. Op Amp Applications. Analog Devices. ISBN 0916550265. Chapter 7. Also available as Op Amp Applications Handbook. Elsevier/Newnes. 2005. ISBN 0750678445. Chapter 7, http://www.analog.com/library/analogDialogue/archives/39-05/op_amp_applications_handbook.html.
  Kester, Walt. 2004. Analog-Digital Conversion. Analog Devices. ISBN 0916550273. Chapter 9. Also available as The Data Conversion Handbook. Elsevier/Newnes. 2005. ISBN 0750678410, Chapter 9, http://www.analog.com/library/analogDialogue/archives/39-6/data_ conversion_handbook.html.
  Zumbahlen, Hank. 2006. Basic Linear Design. Analog Devices. ISBN 0915550281. Chapter 11. Also available as Linear Circuit Design Handbook. Elsevier-Newnes, 2008, ISBN 0750687037, Chapter 11, http://www.elsevierdirect.com/product.jsp?isbn=9780750687034&ref=CWS1.
 
数据手册和评估板
  ADR127 Data Sheet. http://www.analog.com/zh/ADR127/productsearch.html.
  AD8603 Data Sheet. http://www.analog.com/zh/AD8603/productsearch.html.

修订历史
  5/09—Rev. 0 to Rev. A
  Updated Format ................................................................ Universal
  10/08—Revision 0: Initial Version
 

>>>>进入ADI资源中心,下载电子版以及更多资料<<<

此内容为AET网站原创,未经授权禁止转载。