《电子技术应用》
您所在的位置:首页 > 电源技术 > 设计应用 > 等离子(PDP)彩电电源板电路解析与检修技法( 二)
等离子(PDP)彩电电源板电路解析与检修技法( 二)
摘要: 专家点*:鉴于以上缺点,并联式开关电源除了由启动电路、振荡电路、误差取样放大电路和脉宽调节电路组成的常规电路外,为了保证开关电源和负载电路可靠地工作,还设置了许多附属电路。例如:①为防止开关管因开启损耗大或关断损耗大而损坏,设置了开关管恒流激励电路;②为防止负载短路使开关管因过电流损坏,而设置了开关管过电流保护电路;③为防止开关管和负载元器件因过电压损坏,而设置了过电压保护电路;④为防止开关管因“二次”击穿损坏,而设置了尖峰吸收电路;⑤为防止市电过低,使开关管因开启损耗大而损坏,设置了欠电压保护电路。
Abstract:
Key words :

     专家点*:鉴于以上缺点,并联式开关电源" title="开关电源">开关电源除了由启动电路、振荡电路、误差取样放大电路和脉宽调节电路组成的常规电路外,为了保证开关电源和负载电路可靠地工作,还设置了许多附属电路。例如:①为防止开关管" title="开关管">开关管因开启损耗大或关断损耗大而损坏,设置了开关管恒流激励电路;②为防止负载短路使开关管因过电流损坏,而设置了开关管过电流保护电路;③为防止开关管和负载元器件因过电压损坏,而设置了过电压保护电路;④为防止开关管因“二次”击穿损坏,而设置了尖峰吸收电路;⑤为防止市电过低,使开关管因开启损耗大而损坏,设置了欠电压保护电路。

  这些附属电路的加入使电源电路工作的安全性及可靠性大大提高,但同时也使电路的结构更加复杂,元器件数量大大增多,从而导致检修难度加大。

  (2)按激励脉冲产生方式分

  不管何种开关电源,开关管必须工作在开关状态,所以开关管基极所加的激励电压是脉冲电压,按激励脉冲的产生分类,有自激式和他激式两种。自激式开关稳压电源是:利用电源电路中的开关管、高频变压器构成正反馈环路,来完成自激振荡。这种振荡电路虽然简单,但不易控制,因此,PDP 彩电一般不采用自激式开关电源,而采用他激式开关电源。图5 所示的并联式开关电源采用的就是他激式振荡电路(图见上期),因此,也称为他激式并联开关电源。

  他激式开关稳压电源电路的开关管不参与激励脉冲的振荡过程,必须附加有启动电路和振荡器。振荡器产生开关脉冲,来控制电源开关管的导通与截止,让电源电路开关工作而有直流输出电压。在实际电路中,振荡器一般集成在电源控制IC 中(电源控制IC,一般具有:振荡、脉宽调制、过电流保护、过电压保护、欠电压保护等功能;有些还集成有开关管)。

  专家点拨:对于开关管激励脉冲,要求有足够的驱动功率。也就是说,在开关管饱和期间,要求有足够大的基极电流,以维持开关管的饱和导通,这时基极电流应满足Ib>Icp>β(Icp 为开关管集电极的峰值电流)的条件,否则,开关管就会因激励不足而不能完全饱和,而压降增大,功耗增大,开关管过热,容易造成损坏;而在开关管由饱和变为截止时,基极必须加反向电压,形成足够的基极反向电流,使开关管急剧地截止,以缩短开关管截止转换时间,减小其关断损耗。

  ( 3) 按稳压控制方式分

  一般开关电源都要经过稳压措施,来保证开关电源输出端电压的稳定。否则,当市电电压或负载电流发生变化时,将导致输出端电压发生变化,稳压控制电路最终是通过控制开关管的导通时间来实现稳压控制的。按稳压控制方式分,开关电源可分为脉冲调宽式、脉冲调频式、脉冲调频调宽式三种。

  通过计算可以得出,开关电源输出电压UO 的计算公式为:

  由公式可知,改变Ton 或T,就可以控制输出直流电压的大小。若只改变Ton,而保持T 不变,称为“脉冲调宽式调制法”;若只改变T,而保持Ton 不变,称为“脉冲调频式调制法”;若同时改变Ton 和T,则称为“脉冲调频—调宽式调制法”。

  上述三种稳压控制方式,PDP 彩电的开关电源都有采用,其中“脉宽式调制法”应用较多。

  3. 并联式开关电源基本原理

  图6 所示为PDP 彩电并联式开关电源的基本原理图。当激励脉冲为高电平时,使V 饱和导通,则T 的一次绕组的磁能因V 的集电极电流逐渐升高而增加,由于“二次”绕组感应电压的极性为“上负、下正”,所以整流二极管VD 截止,电能便以磁能的形式储存在T 中。

PDP彩电并联式开关电源的基本原理图

V—开关管(NPN型晶体管或N沟道场效应管);T—开关变压器;

VD—整流二极管; C—滤波电容" title="滤波电容">滤波电容; RL—负载电路。

图6 PDP彩电并联式开关电源的基本原理图。

  当V 截止期间.T 各个绕组的脉冲电压反向,则“二次”绕组的电压变为“上正、下负”,整流二极管VD 导通,T储存的能量经VD 整流后,向C 与负载释放,产生了直流电压,为负载电路提供供电电压。

  由以上分析可知,并联式开关电源是反激励式开关电源,即开关管导通期间,整流二极管VD 截止;在开关管V 截止期间,整流二极管VD 导通,向负载提供能量。所以,不但要求开关变压器T 的电感量、滤波电容C 的容量大,而且开关电源的内阻较大。

  4. 开关电源组成电路介绍

  PDP 彩电的开关电源主要由交流抗干扰电路、整流、滤波电路、功率因数校正" title="功率因数校正">功率因数校正电路(多数机型有此电路)、启动和振荡电路、开关电源控制电路、稳压电路、保护电路等几部分构成。

  (1)交流抗干扰电路

  开关电源两根交流进线上存在共模干扰(两根交流进线上接收到的干扰信号,相对参考点大小相等、方向相同,如电磁感应)和差模干扰(两根交流进线上接收到的干扰信号相对参考点大小相等、方向相反,如电网电压瞬时波动)。两种干扰以不同比例同时存在。开关电源中,整流电路、开关管的交流电压快速上升或下降,电感、电容的电流也迅速变化。这些都构成了电磁干扰源。为了减少干扰信号通过电网影响其他电子设备的正常工作,也为了减少干扰信号对本机音、视频信号的影响,需要在交流进线侧加装滤波器电路,即交流抗干扰电路。常用交流抗干扰电路如图7 所示。

常用交流抗干扰电路图

图7 常用交流抗干扰电路图

  在图7 电路中,LF1、LF2 是共模扼流圈,在一个闭合高导磁率铁心上,绕制两个绕向相同的线圈。共模电流以相同方向同时流过两个线圈时,两线圈产生的磁通是相同方向的,有相互加强的作用,使每一线圈的共模阻抗提高,共模电流大大减弱,对共模干扰有强的抑制作用;在差模干扰信号作用下,干扰电流产生方向相反的磁通,在铁心中相互抵消,使线圈电感几乎为零,对差模信号没有抑制作用。LF1、LF2 与电容CY1、CY2 构成共模干扰抑制网络。

  在图7 电路中,L1 是差模扼流圈,在高导磁率铁心上独立绕线构成,对高频率差模电流和浪涌电流有极高的阻抗,对低频(工频)电流的阻抗极小。电容CX1、CX2 滤去差模电流,与L1 构成差模干扰抑制网络。R1 是CX1、CX2 的放电电阻(安全电阻),用于防止电源线拔插时电源线插头长时间带电。安全标准规定:正在工作中的电气设备电源线拔掉时,在2 s 内,电源线插头两端的电压(或对地电位)必须小于原电压的30%。

  专家提示:电容CX1、CX2 为安全电容,必须经过安全检测部门认证并标有安全认证标志。CY 电容一般采用耐压为AC 275 V 的陶瓷电容,但其真正的直流耐压高达4000 V 以上,因此,CY 电容不能随便用AC 250 V,或DC400 V 之类的电容来代用。CX 电容一般采用聚丙烯薄膜介质的无感电容,耐压为AC 250 V 或AC 275 V,但其真正的直流耐压达2000 V 以上,故不能随便用AC 250 V或DC 400 V 之类的电容来代用。

  (2) 整流、滤波电路

  整流、滤波电路的作用是将交流电转换成300 V左右的直流电压。开关电源电路中通常采用桥式整流和电容滤波方式,典型电路如图8 所示。

 整流、滤波电路图

图8 整流、滤波电路图

  电路中,VD1~VD4 是整流二极管,C 是300 V 滤波电容。通过桥式整流电路,可以将交流电压转换成单向脉动的直流电压。通过电容滤波,可将单向脉动的直流电压转换为平滑的直流电压。

  (3)功率因数校正(PFC)电路

  ①功率因数校正电路的作用

  长期以来,开关型电源都是采用桥式整流和大容量电容滤波电路来实现AC/DC 转换的。由于滤波电容的充、放电作用,其两端的直流电压出现略呈锯齿波的纹波。滤波电容上电压的最小值与最大值(纹波峰值)相差并不多。根据桥式整流二极管的单向导电性,只有在AC 电路电压瞬时值高于滤波电容电压时,整流二极管才会因正向偏置而导通;而当AC 输入电压瞬时值低于滤波电容电压时,整流二极管因反向偏置而截止。也就是说,在AC 电路电压的每个半周期内,只是在其峰值附近,二极管才会导通(导通角约为70°)。虽然AC 输入电压仍大体保持正弦波波形,但AC 输入电流却呈高幅值的尖峰脉冲,如图9 所示。这种严重失真的电流波形含有大量的谐波成分,会危害电网正常工作,使输电线上的损耗增加,功率因数降低,浪费电能。

未加功率因数校正电路时输入电流与电压波形图

图9 未加功率因数校正电路时输入电流与电压波形图

  为了提高功率因数,PDP 彩电的开关电源一般采用了功率因数校正电路。加入此部分电路后,可以不断调节输入电流波形,使其逼近正弦波,并与输入电网电压保持同相。因此,可使功率因数大大提高,减小了电网负荷,提高了输出功率,并明显降低了开关电源对电网的污染。

  ②功率因数校正(PFC)电路的基本工作原理

  功率因数校正(PFC)电路分为无源和有源两种。

  无源校正电路,通常由大容量的电感、电容和工作于工频电源的整流器组成。电路较简单,但效率低,因此PDP 彩电中一般不采用。有源校正电路,一般由功率因数校正集成电路为核心组成。工作于高频开关状态,可以得到高于0.99 的电路功率因数,并具有低损耗和高可靠等优点。输出不随输入电压波动变化,因此可获得高度稳定的输出电压,但有源PFC 电路较复杂。在PDP 彩电中,有源PFC 电路应用比较广泛。

  有源PFC 电路框图如图10 所示(图见下期)。从图中可以看出,这是一个由储能电感L、场效应功率开关管V、二极管VD2 构成的升压式DC/DC 变换器。

  整流输入电压由R1、R2 分压后,经输入电压检测电路后,送到乘法器;场效应开关管的源极电流经输入电流检测后也加到乘法器;输出电压由R3、R4 分压后,送到输出电压检测电路,经与参考电压比较和误差放大后也送到乘法器。

  在较大动态范围内,模拟乘法器的传输特性呈线性。当正弦波交流输入电压从零上升至峰值期时,乘法器将三路输入信号处理后,输出相应电平去控制PWM比较器的门限值,然后与锯齿波比较,产生PWM 调制信号,加到MOSFET 场效应管V 的栅极,调整场效应管漏、源极导通宽度和时间,使它同步跟踪电网输入电压的变化,让PFC 电路的负载相对交流电网呈纯电阻特性。结果,使流过一次回路的感性电流峰值包络线紧跟正弦交流输入电压变化,获得与电网输入电压同频、同相的正弦波电流。

  在开关电源实际PFC 电路中,除场效应管V 和几个分压电阻外,上述的大部分电路都集成在一块集成电路上。这块集成电路称为功率校正集成电路,如L6560、SG3561、NCP1650、ICEPCS01 等。