《电子技术应用》
您所在的位置:首页 > 电源技术 > 设计应用 > 基于同步整流技术的反激变换器
基于同步整流技术的反激变换器
摘要: 反激变换器应用广泛,采用同步整流技术能够很好的提高反激变换器效率,同时为使同步整流管的驱动电路简单,采用分立元件构成驱动电路。详细分析了同步整流反激变换器的工作原理和该驱动电路的工作原理,并在此基础上设计了100V~375VDC 输入,12V/4A 输出的同步整流反激变换器,工作于电流断续模式,控制芯片选用UC3842,对设计过程进行了详细论述。通过Saber 仿真验证了原理分析的正确性,证明该变换器具有较高的变换效率。
Abstract:
Key words :

  0 引言

  随着电子技术、信息技术在人们生活中的不断渗透,电子产品的数量不断增加。其能量消耗已大大超过了人们生活中照明所用的能源。国家能源局预测,2010 年全国电力需求,可能将达到4 万亿kWh 左右,增长的速度超过2009 年8%或者9%。全国电力需求增长速度非常快,但发电量增长有限,中国面临严重的电力短缺问题。节约能源可以显着减少所需的电能,同时减少发电厂数量,减少发电厂排放的废气废水和灰渣对环境的污染。而电源是节约能源的重要环节。

  开关电源,它是利用现代电力电子技术,通过控制开关通断的时间比率来维持输出电压稳定的一种电源,广泛应用在诸如计算机、电视机、摄像机等电子设备上。反激变换器具有电路简单、输入输出电压隔离、成本低、空间要求少等优点,在小功率开关电源中得到了广泛的应用。但输出电流较大、输出电压较低时,传统的反激变换器,次级整流二极管通态损耗和反向恢复损耗大,效率较低。同步整流技术,采用通态电阻极低的专用功率MOSFET来取代整流二极管。把同步整流技术应用到反激变换器能够很好提高变换器的效率。

  1 同步整流反激变换器原理

  反激变换器次级的整流二极管用同步整流管SR 代替,构成同步整流反激变换器,基本拓扑如图1(a)所示。为实现反激变换器的同步整流,初级MOS 管Q 和次级同步整流管SR 必须按顺序工作,即两管的导通时间不能重叠。当初级MOS 管Q 导通时,SR 关断,变压器存储能量;当初级MOS 管Q 关断时,SR 导通,变压器将存储的能量传送到负载。驱动信号时序如图1(b)所示。在实际电路中,为了避免初级MOS 管Q 和次级同步整流管SR 同时导通,Q 的关断时刻和SR 导通时刻之间应有延迟;同样Q 的导通时刻和SR 的关断时刻之间也应该有延迟。

图1 同步整流反激变换器

图1 同步整流反激变换器

  2 同步整流管的驱动

  SR 的驱动是同步整流电路的一个重要问题,需要合理选择。本文采用分立元件构成驱动电路,该驱动电路结构较简单、成本较低,适合宽输入电压范围的变换器,具体驱动电路如图2 所示。SR 的栅极驱动电压取自变换器输出电压,因此使用该驱动电路的同步整流变换器的输出电压需满足SR 栅极驱动电压要求。

图2 驱动电路

图2 驱动电路

  该驱动电路的基本工作原理:电流互感器T2 与次级同步整流管SR 串联在同一支路,用来检测SR 的电流。当有电流流过SR 的体二极管,则在电流互感器的二次侧感应出电流,该电流通过R1 转变成电压,当电压值达到并超过晶体管Q1 的发射结正向电压时,Q1 导通,达到二极管VD 导通电压时,VD 导通对其箝位。晶体管Q1 导通后,输出电压通过图腾柱输出电路驱动SR 开通。当SR 中的电流在电流互感器二次侧电阻R1 上的采样电压降低到Q1 的导通阈值以下时,Q1 关断,SR 关断。

  图中同步整流管驱动电路各元件的功能说明如下:

  SR 为同步整流管,用来代替整流二极管;

  T2 为电流互感器,用来检测通过SR 的电流,当有电流流过SR 的体二极管,则在电流互感器的二次侧感应出电流;

  R1 用来将互感器二次侧感应出的电流转变成电压,同时R1 的值决定同步整流管开通和关断时电流互感器二次侧电流大小;

  C1 和二极管VD 用来对互感器二次侧的电压进行滤波和箝位;

  偏置电阻R2,下拉电阻R3 和晶体管Q1 构成开关电路,利用Q1 的饱和截止,实现同步整流管SR 的导通和关断;

  Q2 和Q3 构成图腾柱输出电路,提供足够大的电流,使SR 栅源极间电压迅速上升到所需要值,保证SR 能快速开通。同时为SR 关断时提供反向抽取电流回路,加速SR 关断。

 3 同步整流反激变换器的设计

  3.6 反馈电路设计

  反馈电路采用TL431 配合光耦PC817 作为参考、隔离、取样,电路中将UC3842 内部的误差放大器反向输入端2 脚直接接地,PC817 的三极管集电极直接接在误差放大器的输出端1 脚,跳过芯片内部的误差放大器,直接用1 脚做反馈,然后与电流检测输入的第3 脚进行比较,通过锁存脉宽调制器输出PWM 驱动信号。当输出电压升高时,经电阻R5,R6 分压后输入到TL431 的参考端的电压也升高,此时流过光耦中发光二极管的电流增大,PC817三极管集电极电流增大,三极管集射级电压减小,UC3842 的6 脚输出驱动信号的占空比变小,于是输出电压下降,达到稳压的目的。反之亦然,使输出保持恒定,不受输入电压或负载变化的影响。

  TL431 参考输入端电压ref U 为2.5V,电流为1.5μA,为了避免此端电流影响分压比和避免噪声的影响,通常取流过电阻R6 的电流为参考输入端电流的100 倍以上,所以:

  根据TL431 的特性,R5、R6、Uref  和 U o有固定的关系:

  PC817 三极管集电极电流Ic 受发光二极管正向电流If 控制,由PC817 技术手册知,当二极管正向电流If 在5mA 左右变化时,Ic 和If 具有很好的线性关系,三极管的集射电流Ic在5mA 左右变化。所以:

  式中Uvref  为芯片8 脚电压5V, U comp 为芯片1 脚电压,计算时取系统稳定时1 脚电压最大值。

  TL431 正常工作时需要阴极至阳极电压Uka 大于2.5V,PC817 二极管正向导通压降Uf为1.2V。所以:

  经过计算及仿真调试,得到反馈电路的阻容参数。取R6 为1KΩ,R5 为3.8KΩ,R8 为1KΩ,R9 为120Ω,R7 为150KΩ,C4 为1nF。

  4 仿真分析与结论

  应用 Saber 仿真软件对本文设计的同步整流反激变换器进行仿真。图4 为输入电压200V,满载时,初级MOS 管Q、次级同步整流管SR 驱动信号和次级电感电流波形。由图可见,Q 关断后,SR 经过很短的延迟后就开通,次级电感电流降至接近零时,SR 关断。图5 为输入电压100V、200V、250V、300V 和375V,满载条件下,分别采用同步整流和二极管整流时,系统效率的分布图。

  仿真结果与本文对同步整流反激变换器和同步整流管驱动电路的工作原理分析一致。同时仿真结果证明,该驱动电路可以很好实现同步整流功能,采用同步整流技术可以较好提高传统反激变换器的效率。输入电压100V,满载时,变换器效率最高为87.7%。

图4 Ugs(Q),Ugs(SR),is 的波形

图4 Ugs(Q),Ugs(SR),is 的波形

图5 系统效率的分布图

图5 系统效率的分布图

此内容为AET网站原创,未经授权禁止转载。