《电子技术应用》
您所在的位置:首页 > 模拟设计 > 设计应用 > 从控制器角度看感应电容触控系统的设计
从控制器角度看感应电容触控系统的设计
摘要: 自2007年iPhone®出现后,感应电容触摸屏的年销售额已增长了100倍,并且速度没有减慢的迹象。本文描述了把感应电容 型触摸屏集成到一个设备中时须面对的很多设计和应用挑战,并重点强调了控制器信噪比的重要性。
Abstract:
Key words :

中心议题:

  • 感应电容型触摸屏设计与应用挑战
  • 从控制器角度看感应电容触控系统

简介

自2007年iPhone®出现后,感应电容触摸屏的应用范围就在不断扩大。尽管如此,真正把感应电容触摸屏集成到设备中仍存在着很大的挑战,尤其在液晶 显示器(LCD)、外围器件产生干扰及嘈杂的环境中。有效的解决方案之一是使用高信噪比(SNR)的触摸屏控制器来对抗噪声。一个高信噪比控制器还会有其 它优势,下面将会详细描述。

SNR定义为信号(有用的信息)和噪声(无用信号)的功率比。如果信号和噪声在相同的负载下测量,SNR可以通过计算幅度均方根(RMS)的平方获得。功 率比的值(PS/PN)通常很大,通常用对数(dB)来描述。SNR可以表示为:

SNRdB = 10log10(PS/PN) = 10log10(RMSS/RMSN)² = 20log10(RMSS/RMSN)

高SNR意味着测到的信号强度比背景噪声高。

整体触控性能

主要由两个器件决定整体触控性能:触摸屏传感器和触摸屏控制器。触摸屏传感器种类繁多,它们的名称形象的说明了其形状和结构,例如三角形、菱形、雪花形、 条形等等。例如,“菱形”是菱形的网格结构,而 “条形”是行列交叉的网格,像一个城市的街道。一些传感器类型使用一层ITO,而其它的则需要两层或三层,这决定于所需的系统性能和触摸屏控制器芯片。

通常要根据触摸屏控制器结构来决定触摸屏传感器样式和层结构(“堆叠”)以最大化SNR。例如,在单层互容带有交叉(搭桥)的菱形样式中,触摸屏表面到 ITO的X层和Y层的距离是一样的,这降低了增益误差并使行和列的SNR很接近。尽管如此,仍需要增加一层屏蔽层防止传感器受到LCD噪声干扰。使用高 SNR的触摸屏控制器可以降低触摸屏传感器的成本,放宽设计限制,使用更多的样式和层结构。正如下面将要讨论的一样,高SNR触摸屏控制器还可提供额外的 好处,例如较容易找到触摸中心,降低了触摸屏对环境噪声的灵敏度,并允许使用手套或尖导电笔。

控制器架构

自容式和互容式是两种主要的电容触摸屏感应检测技术,自容式和互容式的特性简单归纳如下:

自容式

•今天仍在使用的早期技术。
•受限于“鬼点”(相对于真实触摸位置的错误触摸位置),通常为一点触摸或两点触摸。
•菱形样式最普遍。
•对LCD噪声抑制较差。
•简单,低成本控制器。

互容式

•正在攻占市场的新一代设计。
•真正的两点或多点触摸。
•较高的精度。
•传感器样式设计更加灵活,这有助于最大化SNR。
•较好的噪声抑制。
•更复杂,高成本控制器。

很多应用仅需要一个或两个触点,因此自容方案更有吸引力,尤其当用户界面的触摸位置可控以消除“鬼点”的时候。自容方案的典型SNR超过30dB,通常需 要在LCD和传感器的触摸层底部之间增加屏蔽层,这会增加成本,降低显示亮度。

其它技术可被用到自容方案以进一步提高SNR。这包括(a)增加每通道的采样数;(b)增加传感器驱动电压,这增加了固定噪声(如来自LCD的噪声)下的 信号幅度;(c)在不同频率采样以避免固定频率干扰,如避开60Hz(这被称为“频率抖动”)。尽管如此,该技术通常会降低帧率,增加功耗,这两样都是不 希望的。

从以上讨论中可以很清楚地看出,为了最大化SNR并支持两点或多点的触摸,互容式是最有希望的感应检测技术。图1的系统框图归纳了互容式的实现方法,即把 一个激励信号加在触摸屏传感器电容的一极,把另一极连接到触摸屏控制器的模拟前端(AFE),AFE的输出被转化成数字格式并在数字信号处理器 (DSP)中进行进一步处理。
 

互容式系统框图
图1. 互容式系统框图

书写笔:电阻触摸屏用户长期以来已经习惯了使用带有尖的书写笔。典型电阻触摸屏书写笔笔尖直径小于1mm,通常用不导电的塑料制作。对于电容触控系统来 说,检测这样一个细小、不导电的器件很困难,因为它能够给触摸屏控制器提供的信号非常微弱。市场上很多触控系统使用的书写笔笔尖直径很大(3-9mm), 使得书写和绘画都变的很困难,因为笔尖粗会使得书写的痕迹很模糊。


只要书写笔用导电材料包裹(一个相对较小的牺牲),高SNR的触摸屏控制器可以检测到1mm直径笔尖的书写笔。图4说明了触摸屏控制器SNR对 2mm导电笔尖的书写笔检测结果的影响。低SNR的控制器很难从背景噪声中识别出小笔尖的书写笔,尤其在屏幕噪声最大的部分。在低SNR情况下使用1mm 笔尖的书写笔将导致有用信号淹没在背景噪声中,导致书写笔无法使用。

图4. 4英寸屏上使用2mm导电书写笔的电容值剖面图,左侧剖面使用高SNR触摸屏控制器;右侧使用低SNR触摸屏控制器。书写笔位于绿色锥体顶部;白色平面的 高度代表了背景噪声。信噪比的增加有效降低了背景噪声幅度,如左图所示。如果右图中的书写笔移到屏幕的左边,信号将被噪声淹没,书写笔将无法工作。

非接触检测:接近检测逐渐在触摸屏应用中被采用。例如,通过增加触控系统的灵敏度,当使用电子书时,用户可以手势翻页,而不需要实际触碰屏幕。但触控系统 增加灵敏度也很容易被环境噪声触发,设计者一直在努力寻找最佳平衡,既要最大化接近距离,又不至于引起误触发。三菱在这个领域做了一些有趣的研究,他们建 了一个触控系统,基于触摸手指是悬空还是真实触摸来自动调节灵敏度。[2]

戴手套操作:在医学应用中,触摸屏需要能在带着外科手套的情况下工作。与之类似,车载触摸屏GPS需要能在冬天戴手套时使用,大多数手套是由介电材料做成 的,这使得触摸屏传感器很难检测到触摸动作。增加触摸屏控制器的灵敏度可能在用户不带手套时引起误触发。唯一解决方法是需要应用(或用户)根据情况选择不 同灵敏度。

结论

高SNR电容型触摸屏控制器带有很多优势,它可以满足如书写笔,小手指和手套等广泛的设计和应用要求。它可以帮助改善触摸精度而不需要专门的 ITO传感器样式或增加传感器通道。它可以满足各种显示器及不同背光灯的要求,同时保持很好的触摸性能,它为传感器设计和生产提供了更灵活的选择。使触控 系统可以工作在强噪声环境中,并可减小设备本身来自LCD,WiFi天线,GPS天线和AC适配器的噪声。它给予设备OEM商更多的自由来选择元器件。最 后,从性能的观点来看,它提供了精确的触摸精度。总之,高SNR触摸屏控制器能帮助终端用户实现更可靠的应用。

此内容为AET网站原创,未经授权禁止转载。