《电子技术应用》
您所在的位置:首页 > 其他 > 设计应用 > 磁悬浮列车运行控制系统仿真环境研究
磁悬浮列车运行控制系统仿真环境研究
徐家镇,徐洪泽
(北京交通大学 自动控制工程系,北京100044)
摘要: 本文对磁悬浮列车运行控制系统仿真环境进行了研究,在此基础上,设计软硬件实现了磁悬浮列车运行控制系统的仿真测试平台,为进一步开展磁悬浮列车运行控制系统的研究奠定了基础。
Abstract:
Key words :

摘   要: 本文对磁悬浮列车运行控制系统仿真环境进行了研究,在此基础上,设计软硬件实现了磁悬浮列车运行控制系统的仿真测试平台,为进一步开展磁悬浮列车运行控制系统的研究奠定了基础。
关键词: 磁悬浮列车  运行控制系统  环境仿真

  客运交通发展的历史是一个运行速度不断提高的历史[2],每一种新型交通工具的出现都伴随着速度的显著提高。随着我国国民经济的持续、快速发展,迫切需要建设和发展与高速客运相适应的、可持续发展的地面高速客运交通体系。高速磁悬浮列车是当今惟一能达到500km/h运营速度的地面交通工具。作为一种安全、快速、舒适、环保的交通工具,磁悬浮列车将得到不断的发展和普及,我国的磁浮交通事业也将进入一个前所未有的发展阶段。
  磁浮交通系统包括线路、道岔系统,列车控制系统,供电、驱动系统和运行控制系统四个部分。其中运行控制系统是整个磁浮交通系统的“大脑”,它涉及检测、有线和无线通信、数据处理、自动控制等各种高新技术。运行控制系统通过计算机控制、计算机网络、通信及信息处理等先进技术与磁浮交通系统的车辆、安全防护、自动运行及调度管理等任务相连,完成对列车运行的控制、安全防护、自动运行及调度管理等任务[3]。运行控制系统在整个磁浮交通系统中对列车运行进行自动控制与安全防护起核心作用。
磁悬浮列车运行控制系统(OCS)是一个安全性要求很高的系统,其安全可靠性直接关系到磁浮列车的安全稳定运行。为了使磁悬浮列车运行控制系统达到相关的安全性标准,对其进行安全性测试是十分必要的。要进行安全性测试,就必须要有一个仿真环境对运行控制系统的实际运行条件进行模拟。仿真环境要求尽可能地反映真实情况,按照真实环境可能出现的各种故障进行模拟。
  目前,我国在OCS安全性测试方面所做的工作还比较少。笔者根据国内对OCS的研究现状对运行控制系统的环境仿真展开研究,并构建了OCS的仿真环境,为OCS的安全性测试提供了软硬平台。
1  OCS外部环境分析
1.1 OCS外部环境功能描述
  OCS由中央控制子系统、分区控制子系统和车载控制子系统三层结构组成。运行控制系统的外部环境包括道岔测控系统、分区牵引控制系统、分区牵引供电系统和列车悬浮导向及定位系统。OCS及外部环境结构如图1所示。


  道岔测控系统主要用于控制道岔的位置,通过接收分区控制子系统的控制命令来移动并锁闭道岔,并把采集到的道岔位置信息传送给分区控制子系统;牵引控制系统按照分区控制子系统发出的控制命令和设定值完全自动运行,主要用于列车牵引的开、闭环控制和状态的监控;牵引供电系统为磁悬浮列车的运行提供动力,它通过大功率变流系统对输出的电压和电流进行调节,从而实现对磁悬浮列车牵引力的有效控制;列车悬浮导向及定位系统主要实现列车的悬浮、定位以及车辆横向稳定控制并跟踪导轨。
1.2 OCS外部接口分析
  由图1可以看出,运行控制系统与道岔测控系统、牵引控制系统、牵引供电系统、列车悬浮导向及定位系统都有接口上的连接。
  OCS与道岔测控系统的接口(如图1中①所示)包括串行接口和数字接口。在上海磁浮示范线中,串行接口用于传送道岔控制命令及位置信息;数字接口用于启动、关闭道岔测控系统的供电。
  OCS与牵引控制系统的接口(如图1中②所示)为以太网接口。在上海磁浮示范线中,通过此接口向牵引供电控制系统传送列车运行的速度曲线数据和参数,从而实现对列车运行的控制。
OCS与牵引供电系统的接口(如图1中③所示)为数字接口。在上海磁浮示范线中,此数字接口用于对牵引供电系统的切断和切断命令执行后电流的回读。
  OCS与列车悬浮导向及定位系统的接口(如图1中④所示)包括串行接口和数字接口。在上海磁浮示范线中,通过此串行接口传送列车定位信息及运行显示信息;数字接口用于对列车的浮起/放下、开启涡流制动、开关车门等。
2  OCS仿真环境的设计与实现
2.1 OCS仿真环境的建立
  通过对OCS外部环境及外部接口的分析可知,环境仿真机可以分别实现对牵引供电系统、道岔系统、列车控制系统的模拟,外部接口也不外乎以太网、串行口和数字接口三种情况。另外,从磁浮列车运行的安全性方面考虑,以太网和串行通路采用双路冗余方式,数字信号采用动态输入输出方式。由此,可以建立如图2所示的OCS的仿真环境,分区控制计算机(DCC)与牵引供电系统环境仿真机之间有二条冗余以太网通路,分区牵引切断(DPS)与牵引供电系统环境仿真机之间有数字信号输入输出通路;分区道岔模块(DSM)与道岔系统环境仿真机之间有两条冗余RS232串行通路和数字信号输入输出通路;车载安全计算机(VSC)与列车控制系统环境仿真机之间有二条冗余RS232串行通路和数字信号输入输出通路。

  OCS与牵引供电系统环境仿真机之间的以太网通路用于DCC与牵引供电系统环境仿真机之间交换相关的牵引数据,包括运行数据和状态数据;数字信号通路是DPS发送一个电子切断信号给牵引供电系统环境仿真机,或读取牵引供电系统环境仿真机执行切断命令后的状态信息。
  OCS与道岔系统环境仿真机之间的RS232通路用于DSM向道岔系统环境仿真机发送道岔动作控制命令;数字信号通路用于道岔系统环境仿真机向DSM发送道岔的位置及状态信息。

  OCS与列车控制系统环境仿真机之间的RS232通路用于VSC向驾驶员控制台提供其所需的运行显示信息,并且驾驶员控制台可以将驾驶员在控制台上发出的操作命令传送回去。列车定位系统通过RS232通路传递定位数据给VSC;数字信号通路用于VSC给列车控制设备发送控制命令,包括列车的浮起/放下、开启涡流制动、开关车门等,这些动作的结果又通过数字信号通路发回给VSC。
2.2 OCS仿真环境的实现
2.2.1 OCS仿真环境的硬件实现

  OCS环境仿真的硬件结构包括牵引供电系统环境仿真机、道岔系统环境仿真机和列车控制系统环境仿真机。这些环境仿真机可采用普通的PC机来实现。一般的PC机都有二个RS232串口,满足二条冗余RS232串行通信的需要,不必另外扩展串口。双路冗余的以太网可以通过增加以太网卡的方式实现。数字信号的输入输出可以通过DB25的并行口进行通信,位数完全满足数字信号量通信的需要。
2.2.2 OCS仿真环境的软件实现
   OCS环境仿真中的软件主要包括牵引供电系统环境仿真机中的软件、道岔系统环境仿真机中的软件和列车控制系统环境仿真机中的软件。
  (1)牵引供电系统环境仿真机中的软件结构
  根据故障-安全的原则,当车地之间的通信中断,列车的速度超过最大允许速度或低于最小允许速度时,必须对牵引供电系统进行安全牵引切断。分区牵引切断的动作通过电子切断和电气切断来实现。DPS向牵引供电系统环境仿真机发送一个电子切断信号,环境仿真机执行切断命令并回读电流值给DPS。如果回读的电流值超过了限定值,则引发电气切断。安全牵引切断事件的软件结构流程如图3所示。


  (2)列车控制系统环境仿真机中的软件结构
  列车控制系统环境仿真机主要接收来自VSC的控制命令并执行相应的操作。环境仿真机每执行一个控制命令就对应着一个功能模块,主要包括列车的启动及停止、紧急停车管理、改变运行模式、列车悬浮、辅助控制面板、涡流制动、监督车辆控制装置、车门监督等。本文仅给出了环境仿真机中的列车悬浮功能模块结构流程图。列车的悬浮必须满足三个条件:有足够的安全定位信息,没有紧急停车信号和分区控制子系统工作正常。列车悬浮功能模块的结构流程如图4所示。


  (3)道岔系统环境仿真机中的软件结构
  道岔系统环境仿真机收到DSM的道岔移动命令后开始移动道岔并将执行后的结果发送给DSM。道岔移动事件的软件结构流程如图5所示。

3  结  论
  本文分析了OCS的外部环境及外部接口,包括以太网接口、串行接口和数字接口三种模式。基于上述分析,建立了磁悬浮列车运行控制系统的仿真环境,给出了磁悬浮列车运行控制系统仿真环境的硬件结构和软件处理流程。系统采用一般的PC机作为环境仿真机,通过通信链路的双路冗余方式以及数字信号的动态输入输出方式提高磁悬浮列车运行的安全性,并得出以下结论:
  (1)以太网和串行通信本身不具备安全性,应用到运行控制系统中必须采取特殊的安全措施以保证数据传输的安全。本实现方案采取了增加冗余通道和对报文进行安全处理等方法来保证磁悬浮列车运行控制系统通信链路的安全性。
  (2)采用动态的输入输出信号,避免电子器件发生故障时导致的固定的“0”或“1”输出对系统安全性的影响,保证了信号传输和系统控制的安全性。
  (3)仿真环境中牵引供电系统环境仿真机、道岔系统环境仿真机和列车控制系统环境仿真机的硬件可采用普通的PC机来实现,其接口满足环境仿真的需要。
  (4)各环境仿真机的软件结构设置应尽量反映真实环境的情况。在设计中综合考虑了系统的安全处理,采取相应的安全措施,使得整个系统满足高安全性的要求。
参考文献
1   吴祥明.磁浮列车.上海:上海科学技术出版社,2003
2   潘洪亮.运行控制系统技术构成分析.磁浮交通,2004;1(1)
3   Yan L G.Development of the Maglev Transportation in  China In:Maglev′2004 Proceedings,2004
4   Zhai W M.Dynamic Simulation of the EMS Maglev Vehicle-Guideway-Controller Coupling System.In:Maglev′2004  Proceedings,2004
5   Otto W.System Safety Verification of the Shanghai Maglev  Line.In:Maglev′2004 Proceedings,2004

此内容为AET网站原创,未经授权禁止转载。