《电子技术应用》
您所在的位置:首页 > 嵌入式技术 > 设计应用 > 实验室智能监控系统设计
实验室智能监控系统设计
来源:电子技术应用2014年第3期
吴大中, 宋俊飞
南京信息工程大学 江苏省气象探测与信息处理重点实验室, 江苏 南京210044
摘要: 设计了一种基于PLC+STM32的智能实验室SCADA系统。RTU硬件采用分散式的结构,将原来由一个MCU完成的复杂任务分散给多个MCU共同完成,系统可靠性和数据处理速率得到大幅度提高。RTU软件遵循可配置性原则,每个GPIO可以针对不同的用途重新配置成,提高了软件的开发效率。调试结果表明,该系统运行稳定,保证实验室各环境参数满足设定要求。
中图分类号: TP391
文献标识码: A
文章编号: 0258-7998(2014)03-0120-03
Laboratory design with intelligent monitor and control system
Wu Dazhong, Song Junfei
Jiangsu Key Laboratory of Meteorological Observation and Information Processin, Nanjing University of Information Science & Technology, Nanjing 210044, China
Abstract: Design an intelligent SCADA laboratory system based on PLC+STM32. By using decentralized structure, RTU hardware distributed the original complex tasks completed by a MCU to multiple MCUs. The reliability of the system and the data processing rate increases. RTU software follow the configuration principle, each GPIO can be reconfigured for different purposes, improves the efficiency of software development. The debugging results show that the system runs steadily, it can ensure the laboratory environment parameters meet the requirements set and provide a safe.
Key words : SCADA;laboratory;monitoring system;distributed

    实验室是进行各种实验工作的特殊环境。为了保证整个实验室系统安全可靠地运行,实时检测、监控实验室各项环境参数,保证实验室状态稳定,并在发生意外或者系统出现故障时,自动采取一定的保护措施,设计一种智能实时监控系统是非常必要的。
    本文提出一种分散式结构的SCADA智能实验室系统,将原本由一个MCU处理的复杂任务分散给多个MCU共同处理,从而使系统的可靠性、稳定性及处理数据速度、系统效率大幅度提高,增强了系统的可扩展性和可改造性。
    数据采集与监控系统SCADA(Supervisory Control And Data Acquisition)是以计算机、通信网络为基础的生产过程控制与调度自动化系统。通过对现场的运行设备进行监视和控制,实现数据采集、设备控制、测量、参数调节及各类信号报警等功能[1]。根据SCADA系统结构,该智能实验室SCADA系统由RTU、HMI、TCOM 3个层次构成。远程控制单元RTU(Remote Terminal Unit)(即传统的下位机),主要负责实验室参数采集和控制;人机接口HMI(Human Machine Interface),主要负责提供良好的人机接口;远程通信网TCOM(Telecommunication),用于HMI与各RTU之间的通信。
1 总体架构
    智能实验室总体架构由房间控制系统、气流控制系统(即通风柜控制系统和阀控制系统)、远程控制系统及人机接口部分组成。如图1所示。

    房间控制部分是实验室监控系统的核心,连接着PLC、阀控制器、通风柜控制器以及触摸屏,主要负责采集房间参数,并发送命令给PLC、阀控制器、通风柜控制器,以控制整个实验室的正常运行。气流控制部分和阀控制器主要根据房间控制器发送参数和命令,PID调节房间送/排风,在保证房间最小换气次数的前提下,保证房间的负压环境。远程控制部分由远程PC和PLC组成,用户可以通过PC机的上位机软件发送命令给PLC和房间控制器,从而达到远程控制整个系统的效果。
    人机接口除了远程PC外,每个房间控制器都配有一台7英寸液晶触摸屏,用户可以通过触摸屏发送命令给房间控制器,控制整个系统的运行。此外,监控系统还包含报警装置,当房间参数超出设定值,或者出现毒气泄漏等危险情况时即刻发出报警信号。
2 房间控制部分
    房间控制部分由房间控制器和传感器组成。房间控制器以STM32F105RB处理器为主控制MCU,通过AI模块采集温度、湿度、压力、风量等信息,并通过DI模块采集开关量信息,通过AO模块调节系统的送/排风量和温度,通过DO模块改变系统各开关量的输出状态,房间控制部分结构如图2所示。

    STM32F105RB是基于ARM CORTEX-M3核的32位RISC处理器,相比ARM7速率提高1/3,功耗降低3/4,最高运行频率可以达到72 MHz。配备CAN模块、RS485串口模块、电源模块、8位DI及6位DO模块。不仅涵盖了现有的STM32F103的功能,而且在此基础上增加了网络功能[2]。
    温度检测模块采用瑞士伟拓Vector室内温度传感器SRA-T1,EEPROM自动保存最值记录,具有掉电存储功能。SRA-T1室内温度变送器感温敏感元件是NTC电阻,变送器电路的微处理器每秒对温度采样一次。滤波时间计算信号平均值,并且根据湿度量程做线性变换,然后产生信号输出,保证外部干扰对此变送器影响最小。默认滤波平均时间10 s,测量范围0~+50℃(+32~+122°F)。本系统每个房间配置一个SRA-T1室内温度传感器,采用24 V直流供电,输出0~10 V电压,接入房间控制器的AI模块。房间控制器将电压转换为温度,储存在RAM中,最后在上位机上显示。
3 气流控制部分
    无论应用于何种行业,实验室气流控制系统对于实验室人员的人身安全都是至关重要的。必须确保实验室有毒气体从通风柜安全排放,维持合适的温/湿度环境和实验室负压。因此实验室通风系统在智能实验室系统中具有很重要的作用。
    监控系统送排风采用全新风直流式装置及压差和温差控制,响应快速。送风空调机将室外风处理至送风状态,然后送入实验室内,补充实验室排风,维持实验室内温/湿度和负压环境[3]。送风机和排风机各2台,一用一备。由于实验室是全新风系统,实验室送风量较大,导致系统能耗和运行的电费较大, 故将PLC和变频器技术[4-5]应用于实验室控制系统中,通过检测管道末端压力,调节变频器频率,在保证房间最小换气次数的前提下,降低送风量,从而达到节能、减少功耗的目的。各控制器通信图如图3所示。

    气流控制中,通风柜控制器首先通过AO模块将调节门开度发送给排风文丘里阀控制器,并通过485总线将通风柜开关机状态、面风速、紧急排风等信息传输给排风文丘里阀控制器。然后排风文丘里阀控制器根据调节门开度,应用PID方法通过排风文丘里阀开度调节排风量,同时排风阀控制器会将阀开度反馈给通风柜控制器,通风柜会将阀开度与调节门开度进行比较,判断阀控制器是否正常运行。排风阀控制器还会通过AO模块将排风量发送给房间控制器,并通过CAN总线将通风柜各种信息发送给房间控制器。房间控制器会将采集到的排风量发送给送风文丘里阀,送风文丘里阀会根据排风量调节送风阀开度,从而调节送风量,并且送风阀控制器会将实际送风量反馈给房间控制器。最后房间控制器会将通风柜信息、送/排风量、温/湿度及压力等信息显示在触摸屏上。由此得出监控系统气流控制部分的关键在于通风柜系统,只要调节门开度发生改变,则排风量发生改变,随之送风量也相应发生改变,而且在几毫秒内响应。
4 RTU软件
    系统软件设计采用传统的无限循环方式,开发平台采用KeilMDK,采用STM32固件库VER3.5版本开发程序[6]。按照灵活性和可重新配置原则,每个AI、AO、DI、DO端口都可以配置成为不同的功能,如AI1既可以作为温度传感器的输入,也可以作为压力传感器的输入,同一时刻只能配置一个功能,可以通过上位机软件或者触摸屏设置[7]。
    主程序运行流程如图4所示,当系统上电后,首先进行设备初始化,然后系统会在每次循环的开始重启13路ADC通道,采集各AI的输入,并通过DMA保存到RAM中[8]。在中断函数中,系统时钟每10 ms产生一次中断,将c_task[TASK4].TaskStatus置“1”,因此主循环中会首先执行TASK4:DisposalRoomEvent(),程序会进行手动模式和自动模式选择,默认情况下为自动模式。在手动模式下,风机以工频形式运行,系统会根据手动输入值改变各房间参数和系统参数。自动模式下,风机以变频模式运行,系统会根据房间温度和压力情况,自动调节水阀开度和通风柜风量大小。

 

 

    主循环是系统软件核心,主要负责数据的采集、存储以及与气流控制系统数据的交换。主循环共有5个任务[1]: (1)TASK1执行的是串口1接受数据处理任务、完成房间控制器与PLC之间的数据通信;(2)TASK2执行的是串口2接受数据处理任务,完成房间控制器与触摸屏之间的数据通信;(3)TASK3执行的是串口3或者CAN总线接受数据处理任务,完成房间控制器与通风柜之间的通信;(4)TASK4的作用是处理房间参数和系统参数;(5)TASK5用来保存房间参数和系统参数。
    基于PLC+STM32的智能实验室SCADA系统,利用PLC和变频器技术调节风机频率,节约能耗,提高了设备的稳定性和可靠性。利用CAN总线和串行总线将STM32、PLC、传感器、触摸屏组成网络,可方便地监控实验室设备的运行状态。另外,利用智能PID技术调节系统送/排风以及房间温度,提高了系统的动/稳态性和自适应性,保证了实验室温度、压力、湿度维持在一个极小的波动范围内,确保了实验室的正常工作环境。
    通过以太网将多个PLC和中央控制室工控计算机联网,实现风机和实验室的远程监控以及手动模式和自动模式的切换。该系统已在某海关运行,调试结果表明,系统运行稳定,各项参数都能满足安全控制要求,极大降低了系统的能耗,保证了实验室工作环境的安全性及舒适性。
参考文献
[1] 陈 颖. SCADA系统通信软件研究与设计[D].南京:东南大学,2006.
[2] 周计文,王辉. 基于ARM的智能家居控制器的设计[J]. 微计算机信息,2007,8(2):149-151.
[3] 储云峰.施耐德电气可编程控制器原理及应用[M].北京:机械工业出版社,2007.
[4] 贺亮. 基于PLC的高清电子警察控制系统的研制[J].计算机应用与软件,2012,29(5):241-243.
[5] 洪群欢,吕昂. 一种基于STM32的温室SCADA系统[J].农机化研究,2010(5):128-132.
[6] 周先春, 石兰芳, 周杰. 一种出租车调度中心系统的设计[J].电子技术应用,2012,38(3):136-138.
[7] 张楠. 可配置远程温度监控SoPC系统设计与实现[J].计算机应用与软件,2012,29(6):61-200.
[8] 刘建成,李乐乐,李浩,等.煤矿瓦斯气体自动取样装置的设计与实现[J]. 电子技术应用,2013,39(7):77-79.

此内容为AET网站原创,未经授权禁止转载。