《电子技术应用》
您所在的位置:首页 > 模拟设计 > 设计应用 > YOLO-PDS:基于改进的YOLOv11的无人机小目标检测算法
YOLO-PDS:基于改进的YOLOv11的无人机小目标检测算法
电子技术应用
谭勋琼,王颖林
长沙理工大学 物理与电子科学学院
摘要: 目标检测在遥感领域中具有广泛的应用前景。尽管目标检测算法在自然图像中取得了明显的进展,但这些方法直接应用于遥感图像时仍然面临诸多挑战。遥感图像的背景往往比较复杂且物体较小,导致前景与背景信息的分布极为不平衡。针对无人机图像小目标和物体遮挡的问题,提出了一种基于风车状卷积(PinwheelConv)改进的无人机小目标检测算法。为了改进模型对小目标的检测效果,在骨干网络中使用风车状卷积替换普通卷积来更好地适应小目标提取特征,同时基于风车状卷积的思想设计了C2f-PC模块来替换骨干中的C3k2模块。为解决无人机图像中目标遮挡严重的问题,创新性地提出了C2f-PDWR模块来替换颈部网络中的C3k2模块,来增强模型的特征融合能力,同时引入了SEAM(Spatially Enhanced Attention Module)来改善模型对被遮挡物体的检测效果。最后,基于YOLOv11提出对小目标检测更加高效的YOLO-PDS模型。其在VisDrone2019数据集上所提方法较基准模型YOLOv11检测方法mAP50提高3.7%以上,召回率提高2.2%以上。
中图分类号:TP391.4 文献标志码:A DOI: 10.16157/j.issn.0258-7998.256845
中文引用格式: 谭勋琼,王颖林. YOLO-PDS:基于改进的YOLOv11的无人机小目标检测算法[J]. 电子技术应用,2025,51(12):96-102.
英文引用格式: Tan Xunqiong,Wang Yinglin. YOLO-PDS: a small object detection algorithm for drones based on the improved YOLOv11[J]. Application of Electronic Technique,2025,51(12):96-102.
YOLO-PDS: a small object detection algorithm for drones based on the improved YOLOv11
Tan Xunqiong,Wang Yinglin
School of Physics and Electronics, Changsha University of Science and Technology
Abstract: Object detection has broad application prospects in the field of remote sensing. Although object detection algorithms have made significant progress in natural images, these methods still face numerous challenges when directly applied to remote sensing images. The background of remote sensing images is often complex, and the objects are relatively small, which leads to an extremely imbalanced distribution of foreground and background information. To address the issues of small targets and object occlusion in drone images, this paper proposes an improved drone small object detection algorithm based on PinwheelConv. To enhance the model's performance in detecting small objects, the PinwheelConv is used in place of regular convolution in the backbone network, which better adapts to the extraction of small target features. Additionally, a C2f-PC module based on the windmill convolution idea is designed to replace the C3k2 module in the backbone. To address the severe occlusion problem in drone images, this paper innovatively introduces the C2f-PDWR module to replace the C3k2 module in the neck network, enhancing the model's feature fusion capability. Moreover, a Spatially Enhanced Attention Module (SEAM) is incorporated to improve the model's detection of occluded objects. Finally, this paper proposes a more efficient small object detection model, YOLO-PDS, based on YOLOv11. The proposed method improves the mAP50 by over 3.7% and the recall rate by more than 2.2% compared to the baseline YOLOv11 detection method on the VisDrone2019 dataset.
Key words : object detection;YOLOv11;Pinwheel Convolution;multidimensional attention mechanism

引言

随着无人机的出现,航拍领域经历了深刻的变革。最初设计用于军事侦察的无人机现已突破传统应用范围,成为众多民用和科研领域中的关键工具。无人机技术的广泛应用得益于其高分辨率图像采集能力,这为空间数据分析提供了全新的视角。无人机在航拍图像分析中的应用已在多个领域中变得不可或缺。在城市规划领域,无人机为智慧城市设计与管理提供了重要支持,提供了推进可持续发展的关键数据;在环境监测中,无人机为生态系统评估和野生动物保护提供了宝贵的洞察。此外,凭借其高度的灵活性和多功能性,无人机在灾后响应与管理中的作用也日益凸显,能够迅速评估受灾区域。这些多元化的应用充分证明了无人机作为多功能工具的巨大潜力,突破了传统应用的边界。然而,由于无人机图像具有复杂的背景、小物体的尺寸以及遮挡问题,仍然存在许多挑战。因此,小物体检测已经成为该领域一个重要且复杂的研究重点。


本文详细内容请下载:

https://www.chinaaet.com/resource/share/2000006883


作者信息:

谭勋琼,王颖林

(长沙理工大学 物理与电子科学学院,湖南 长沙 410114)


subscribe.jpg

此内容为AET网站原创,未经授权禁止转载。