《电子技术应用》
您所在的位置:首页 > 电源技术 > 设计应用 > 将浪涌电流限制和PFC结合应用于白色家电马达
将浪涌电流限制和PFC结合应用于白色家电马达
摘要: 当欧洲强制要求 80W 及以上的电气负载以高功率因数的方式消耗电路中的电流时,这意味着人类在资源和环境保护方面又向前迈出了一步。当然,许多消费类电子产品也由此受到了影响,其中包括白色家电。由于配置了逆变器用于电动马达的驱动,所以诸如空调、冰箱、洗衣机和干燥机之类的许多家电的负载非常复杂。
Abstract:
Key words :

当欧洲强制要求 80W 及以上的电气负载以高功率因数的方式消耗电路中的电流时,这意味着人类在资源和环境保护方面又向前迈出了一步。当然,许多消费类电子产品也由此受到了影响,其中包括白色家电。由于配置了逆变器用于电动马达的驱动,所以诸如空调、冰箱、洗衣机和干燥机之类的许多家电的负载非常复杂。一般而言,复杂负载的功率因数都比较低。通过强制校正上述家用电器的功率因数,可更好地利用输电线路送来的电能,从而节约能源并同时降低电能成本和减少燃烧矿物燃料而产生的二氧化碳排放。当今世界,很多政府监管部门都已经强制要求在白色家电中要具有类似的 PFC 功能。

  不具备 PFC 功能的马达驱动电路前端非常类似于一个开关模式的电源。在这个电源中有一个大容量电容,它将消除整流电源中的直流。当马达驱动电路首次通电时,由于大容量电容上没有电荷,整流电源的输入端看起来就像是一个短路电路。当通电时,这种情况将产生较大的浪涌电流,以为电容器充电。如果上述浪涌电流未得到控制或限制,那么线路中的电流消耗将迅速飙升,从而超过其正常 RMS 工作电流(请参阅图 1)。这些过大的电流会对保险丝、焊点和电子组件等机械和电气元件造成潜在的损坏或应力。




  图 1 典型的 120VAC 浪涌电流曲线图

  大多数的白色家电的马达制造商都已经选用负温度系数电阻 (NTC) 来限制浪涌电流。NTC 的工作原理非常简单。在低温和初次启动的情况下,NTC 是一只高阻抗器件,限流能力非常突出。NTC 启动或进入正常运行工作状态片刻后,由于功耗的存在,其温度会升高。随着温度的升高,其电阻显著下降,这样则为电流提供了一条更为顺畅的流经通道。在大多数嵌入式马达驱动电路中,NTC 放置在大电流路径中,或是交流侧,抑或是桥接整流器之后(请参阅图 2)。




  图 2 典型的浪涌保护电路

  采用 NTC 来限制浪涌的做法存在一些内在的不足之处,这些不足将对嵌入式马达驱动器件的稳定性产生负面的影响。正如前面所述,NTC 的效率取决于温度的高低。NTC 的温度越高,其效率也就越高。NTC 不可用作散热元件,否则它将无法像预想的那样工作。由于功率的消耗,而使其他半导体元件所在区域的环境温度上升。在嵌入式环境中,这一问题更为严重。温度只要升高 10oc,半导体的预期寿命或平均无故障时间 (MTBF) 将缩短 50% 之多,从而大幅降低马达驱动器件的稳定性。

  NTC 存在的另一个主要问题就是其热堆积 (thermal mass) 或时间响应。如果电源电压暂时下降或电源电压长时间严重欠压,而此时大容量电容器又切断对其的有效充电,那么将会引发问题。当线电压恢复正常时,NTC 或许还未能获得足够的冷却时间,这样将使其处于低阻抗状态。在这种情况下,由于线电压的恢复而产生比正常情况下更高的浪涌电流,甚至比初次启动时产生的浪涌电流还要高。此时,电路无任何保护措施。这种超乎寻常的大电流会损坏电路中传动系元件,如保险丝、焊点、线迹以及路径中的所有元件。

  图 3 显示了为克服 NTC 中许多恼人问题的实施方案。这种实施方案就是既可选择固定阻值的电阻,也可选择 NTC 作为浪涌电阻。这里所阐述的浪涌电路具有两只额外的硅控整流器 (SCR) 和一个来自 PFC 升压电感小辅助绕组的非稳压电压源。

  马达电路首次通电时,电流首先流经桥接整流器、浪涌电阻,然后流至大容量电容器。在该电容器处,浪涌电阻对电流进行了限制。一段时间之后(时间长短通常取决于 PFC 控制器电路),电流开始流动。电流流动时,PFC 控制器开始开关功率 MOSFET,而 MOSFET 反过来启动升压电感中的脉冲电流。然后,这一脉冲电流会在辅助绕组上产生一个浮动非稳压电压,这一电压用于触发两只 SCR 的栅极电路。两只 SCR 以如下方式布置在电路中:提供一条电流通道,这条通道绕过桥接整流电路中的两只整流器以及浪涌电阻。在电路中无需额外增加串联元件的情况下,上述所选路径即可为电流提供一条非常高效的通道。虽然 SCR 的正向压降 (Vf) 比整流二极管稍大,但是固定阻值电阻或 NTC 等限流组件两端的压降已经消除。此外,SCR 散发的热量可由散热片予以消除(经由 SCR 的机架),而 NTC 无法做到这一点。这种散热能力可使器件在更适宜的环境下运行,从而实现更高的系统稳定性和 MTBF 值。

  必须选择辅助绕组的匝数比,以确保产生足够的电压来触发各种规定线电压极限下 SCR 的栅极电路。由于 PFC 电路的开关频率一般比线路频率高许多,所以栅极电路触发的时间设定通常无关紧要。工作频率仅为 40 kHz 的 PFC 电路将确保 SCR 的零交叉开关,使其更像桥接中的简单整流器。

此内容为AET网站原创,未经授权禁止转载。