《电子技术应用》

一种用于APFC的改进型ZVT-BOOST电路

王正仕,方红兴,徐德鸿
摘要: 介绍一种改进型ZVT-BOOST电路,辅助管增加了无损吸收电路,进一步提高了软开关电路的效率。文中分析了电路的工作原理,给出了仿真与实验结果以及主要参数的设计。

Abstract:

1引言

  有源功率因数校正(APFC" title="APFC">APFC)技术能够实现各种电源装置" title="电源装置">电源装置网侧电流正弦化,把非线性负载变换成为一个等效纯电阻,使功率因数接近1,极大地减少了电流的高次谐波,消除了无功损耗,减小了电磁干扰(EMI)。目前已进入商业实用阶段。由于是在电网和电源装置之间串联插入的功率校正装置,因此功率因数校正装置的可靠性和电效率显得尤为重要。能够实现功率因数校正的电路有多种,在功率较大的场合,BOOST" title="BOOST">BOOST电路具有许多优点而得到了广泛的应用[1]。但是,单相BOOST型PFC硬开关变换器工作于电流连续模式(CCM)时,由于BOOST二极管的反向恢复,功率开关器件将产生很大的开通损耗(这部分损耗将占PFC电路总损耗的30%)[2]。同时产生很大的干扰。这不仅降低了功率,更为严重的是,由于损耗引起温升,降低了可靠性。所以在大功率时,硬开关BOOST电路存在严重的缺陷[1]。零电压" title="零电压">零电压过渡(ZVT)技术应用于BOOST电路很好地解决了二极管反向恢复问题。但是其辅助管工作于硬关断状态,将产生较大的关断损耗。

2改进型ZVT-BOOST电路的原理

  为了减少ZVT-BOOST电路辅助管的关断损耗,在辅助管上加入无损吸收电路,实现辅助管的软关断。电路如图1所示,图中C1、VD1就是关断时的无损耗吸收电路。

  电路的工作有八个阶段组成,如图2所示。

  Mode1,t0-t1阶段:t0时刻辅管Sr受控开通,流过BOOST二极管VD的电流iD开始向辅管Sr、辅助电感Lr换流。LrdiLr/dt=U0,直至iLr=iL,iD=0。

  Mode2,t1-t2阶段:BOOST二极管VD电流过零关断,谐振电容Cr(包括主管S的内部电容)和辅助电感Lr谐振,iLr继续上升,Ucr下降。

  当Uin>Ucr时,BOOST电感L中的电流iL开始上升。

  Mode3,t2-t3阶段:Ucr下降为零,主管S的内部反并联二极管导通,主管S的端压被钳位于-0.7V。

  Mode4,t3-t4阶段:在零端压下主管S受控开通,iL流入S:LdiL/dt=Uin,同时辅管Sr受控关断,iLr向吸收电容C1以及辅管Sr内部电容Cds谐振充电:LrdiLr/dt=Ucl=UCds,(C1+Cds)dUcl/dt=iLr。

  由于增加了吸收电容C1,所以辅管Sr关断时电压上升的速度变慢,实现了关断缓冲。

  Mode5,t4-t5阶段:当Ucl=Ucds=UO时,VD2导通,Ucl、Ucds被箝位于UO,Lr通过已开通的主管S向负载释放能量,直至iLr=0。

  Mode6,t5-t6阶段:iLr下降为零,VD1、VD2、VD3因电流过零关断,iL通过导通的主管S继续上升。

  Mode7,t6-t7阶段:主管S受控关断,iL向Cr充电,Ucr上升;由于Ucl+Ucr=UO,Ucr上升使Ucl下降(也就是iL向C1反向充电,VD2导通)。直至Ucr=UO,Ucl=0,使辅管Sr的缓冲电容C1电压无损回零,实现

Wzs1.gif (6775 字节)

图1改进型ZVT-BOOST电路

Wzs2ab.gif (7449 字节)

(a)Mode1   (b)Mode2

Wzs2cd.gif (8298 字节)

(c)Mode3    (d)Mode4

Wzs2ef.gif (8416 字节)

(e)Mode5    (f)Mode6

Wzs2gs.gif (7423 字节)

(g)Mode7    (h)Mode8

图2电路工作的八个阶段

Wzs3.gif (11494 字节)

图3电路工作的原理波形

了无损吸收,可以看出,C1对主管S关断也起到了关断缓冲的作用。

  Mode8,t7-t8阶段:BOOST二极管VD开通,并保持Ucr=UO,Ucl=0。

  电路进入下一周期。图3给出了电路的主要波形。

  可以看出,改进型ZVT-BOOST电路的主管在零电压下开通。关断时,并联电容减少了关断损耗。辅管由于增加了缓冲吸收电容C1,减少了关断损耗。而且吸收电路的能量(1/2)C1U2o向负载释放,没有造成损耗。因此,无损吸收进一步降低了原来ZVT-BOOST电路的损耗。

3仿真结果

  对图1电路用PSPICE进行仿真,选用参数为:L=600μH,Cr=1000pF,Lr=20μH,C1=1nF,Cds=400pF,Uin=200V(DC),UO=400V,RO=82Ω。图4给出了仿真结果。

4主要参数的设计

  把改进型ZVT-BOOST电路运用于PFC,设计指标:Pin=4.0kW,Uin=220V,Uo=400V,fs=50kHz,PF>0.99,输入电流脉动<10% 。

(1)BOOST电感L

L的选取应满足输入电流纹波" title="纹波">纹波的要求,根据SPWM的调制原理,不难得到[4]。

式中,Uin(pk)为输入电压的峰值;△I为最大输入电流纹波。

(2)输出滤波电容Co

对输入、输出瞬时功率进行分析,可以看出输出电压Uo包含有两倍网频(即100Hz)的纹波,为了使Uo满足设计要求(脉动<5% ) ,

(3)谐振参数Lr、Cr

由前述原理可知,为了保证主管零电压开通,主管的开通时刻应比辅管延时一段时间td,

td≥t2-t1=t10+t21(4)

式中,t10为iL从VD换向Sr所需的时间,

t10=t1-t0=Lr·iLmax/Uo(5)

其中iLmax应取最大输入电流并考虑其纹波。

其中Tr为谐振周期。

  改进型ZVT-BOOST电路由于给辅管增加了无损吸收电路(缓冲强度可按强型设计),大大减小(甚至消除)了关断损耗,进一步减小整个电路的损耗。

Wzs4.gif (29791 字节)

图4PSPICE仿真结果

 

图5改进型ZVT—BOOST电路实验波形

  设计时,谐振频率fr一般取开关频率fs的5~10倍。过高,则谐振电流峰值太大;过小,则td过长,主电路不能利用的占空比太大,造成输入电流的畸变和输出电压的不稳。Cr的选取应有利于减少主管的关断损耗和不引起过大的谐振峰值电流。由于C1同样对主管起到了关断缓冲吸收的作用,因此Cr的值可取小,甚至不用外接。取Cr=1000pF(包括主管内部输出电容)、Lr=20μH,td=2μs。

  (4)吸收电容C1

  C1取大有利减小主管和辅管的关断损耗,但过大,则会造成L中的能量不足以使UC1恢复回零,起不到缓冲的作用,实验中取C1=1nF。

5实验结果与结论

Wzs5.gif (13783 字节)

(a)主管驱动与主管端压波形  (b)PFC电路输入端电压、电流波形

  图5给出了采用改进型ZVT-BOOST电路实现PFC的实验波形。

继续阅读>>