《电子技术应用》

基于DSP的逆变器系统代码生成方法及实现

2017年电子技术应用第9期
安永军,帕孜来·马合木提
(新疆大学 电气工程学院,新疆 乌鲁木齐830047)
摘要: 逆变器系统属于混杂系统,智能控制及故障诊断的DSP代码开发周期长、效率低、实现比较繁琐。针对这一问题,提出利用Embedded Coder工具辅助DSP实现逆变器智能控制及故障诊断研究。Embedded Coder将建模工具Simulink、集成开发环境CCS以及DSP目标板完美链接,在Simulink仿真环境下即可实现DSP的操作与开发。介绍了逆变器结构和PWM触发控制原理,以及Embedded Coder实现PWM代码的生成方法。利用Simulink设计PWM代码生成模型,并利用Embedded Coder工具生成PWM执行代码,实现Simulink环境下DSP程序调试与逆变器系统开发。
中图分类号: TN386.2;TM464
文献标识码: A
DOI:10.16157/j.issn.0258-7998.170020
中文引用格式: 安永军,帕孜来·马合木提. 基于DSP的逆变器系统代码生成方法及实现[J].电子技术应用,2017,43(9):64-67.
英文引用格式: An Yongjun,Pazlai Mahemuti. Code generation method and implementation of inverter system based on DSP[J].Application of Electronic Technique,2017,43(9):64-67.

Code generation method and implementation of inverter system based on DSP

An Yongjun,Pazlai Mahemuti
(College of Electrical Engineering,Xinjiang University,Urumqi 830047,China)
Abstract: Inverter system is a hybrid system. The DSP code of intelligent control and fault diagnosis has long development cycle, low efficiency, and tedious implementation. Aiming at this problem, employing Embedded Coder tool to assist DSP in realizing intelligent control and fault diagnosis of inverter is put forward. As long as Embedded Coder links the modeling tool Simulink, integrated development environment CCS and DSP target board perfectly, the DSP operation and development can be achieved in the Simulink simulation environment. This paper introduces the inverter structure, the principle of the PWM trigger control, as well as the PWM code generation method using Embedded Coder. The PWM code generation model is designed by using Simulink, and the PWM execute code is generated by utilizing Embedded Coder tool to realize DSP program debugging and inverter system development in Simulink environment.

0 引言

    逆变器作为风力发电系统与电网的接口,承担着核心电能变换和控制的作用,同时是系统中极易发生故障的薄弱环节,系统能否向电网或负载提供优质的电能,逆变器起到至关重要的作用[1-3]。为了确保电网稳定运行,提高电能质量,逆变器的故障诊断尤为重要,因此近些年逆变器的故障诊断研究成为了国内外学者的研究热点。TMS320F28335 DSP作为TI公司推出的32位浮点数字控制处理器,其主频150 MHz,具有外设丰富、性价比高、存储空间大、处理速度快等优点[4-5],一直被用作逆变器智能控制及故障检测与诊断系统的核心控制器。

    逆变器系统是典型的相互依赖、错综复杂的混杂系统[6],传统的DSP系统的代码编程费时费工、效率低。Mathworks公司和TI公司联合推出TSP工具,使得在Simulink环境下即可进行嵌入式系统建模、仿真、代码生成及调试工作,大大提高了工程开发效率。本文在逆变器系统上实现代码自动生成

1 代码生成技术

    代码自动生成技术是指用特定的软件(MATLAB)或者软件中特定的工具箱,建立目标代码的系统仿真模型,并根据特定的目标配置自动生成嵌入式系统应用程序[7-8]

    Embedded Coder是MathWorks公司提供给Simulink用户针对嵌入式系统开发的强有力的工具。TSP TI C2000(Embedded Coder Target Support Package for Texas Instruments C2000 Processors)工具箱由TI公司和MathWorks公司联合开发,可与TI公司的CCS(Coder Composer Studio)集成开发环境(IDE)无缝对接,是针对基于C2000系列DSP嵌入式系统开发的工具箱[9-10]。该工具箱提供了DSP外围资源一对一的接口模块,可以将系统模型转换为可优化的、可移植的、自定义的产品级嵌入式C代码[11-12]。将模型的信号源和信号接收部分模块替换成I/O端口,由软件提供的系统.tlc文件负责统筹调用代码生成的整个过程,根据目标配置自动生成系统应用程序。

    应用代码生成技术不需要逐句逐行的编写模型仿真所需要代码,并较容易进行相应的调试。与传统设计方法相比,明显具有开发周期短、费用低、效率高等特点。

2 基于代码生成技术的开发流程

    首先根据需求确定系统设计标准,在Simulink平台中根据设计思路建立系统仿真模型;其次,根据系统设计要求设置模型参数及仿真环境,并植入相应的智能算法,完成配置工作后进行模型仿真,在仿真过程中实时观测仿真结果。如若仿真结果与预计结果有偏差,则及时完善仿真模型或参数设置并进行反复修正,直至仿真结果与理论结果吻合。仿真完成后对Simulink模型进行目标环境配置,设置系统文件及硬件调试环境,编译代码生成模型,生成代码执行文件(.out),连接硬件调试板,下载执行文件,运行程序,观察并测试系统参数。其开发流程如图1所示。

qrs5-t1.gif

3 三电平逆变器

    三电平逆变器是常见的电力电子电路拓扑结构,由以两电平变换器的一个桥臂为基本开关单元经过串并联拓扑而成[13],基本开关单元为图2结构,此电路只输出两种电平,通过此基本开关单元的串联或并联的形式加以组合,以达到输出端输出多于两个电压等级的电压值。可构成如图3所示的三电平逆变器的单相桥臂,3个同样的桥臂并联再与直流电源等必要器件相结合,即可得到三电平全桥逆变器结构。

qrs5-t2.gif

qrs5-t3.gif

    对桥臂上的IGBT按调制算法规律进行有序的控制,使IGBT按照固有的规律工作,即可输出三电平全桥交流电压波。其调制算法如图4所示,正半轴载波和调制波生成互补的两列触发脉冲,分别触发VT1和VT3;负半轴载波和调制波生成互补的两列触发脉冲,分别触发VT2和VT4。VT1和VT2的控制脉冲p1和p2如图5所示。输出线电压Uab如图6所示,与传统两电平逆变器相比,三电平逆变器功率管的耐压、容量提高了一倍,降低了输出线电压的du/dt,波形得到明显改善,对比与两电平线电压更趋近于正弦波。

qrs5-t4.gif

qrs5-t5.gif

qrs5-t6.gif

4 三电平PWM代码生成

    三电平PWM为12路触发脉冲,如若在CCS中逐句逐行编写程序,则是非常庞大的任务量,而且在编程过程中不可避免地会出现错误,需要不停地修改和测试代码,需花费大量的人力。为节约人力和时间,减少出错率,提高开发效率,利用自动代码生成技术来生成三电平PWM控制脉冲。建立三电平PWM自动代码生成模型如图7所示。

qrs5-t7.gif

    TSP工具箱中只提供DSP的外围接口,需要利用Simulink的其他工具搭建三电平PWM模型,再由TSP中的Digital Output模块定义输出端口[14-15]。其中PWM模块来自Simulink>Power Systems>SpecializedTechnology>Control&Measurements>Pulse&Signal Generators,此模块为三电平PWM输出模块,设置频率、相位、采样周期等参数,使逆变输出电压为50 Hz。三电平PWM输出有12路脉冲,而每个Digital Output模块只提供8个GPIO接口,需要用Demux和Mux模块组合,用两个Digital Output模块输出脉冲。图7中OUT1模块GPIO0~GPIO7设置使用,OUT2模块GPIO8~GPIO11设置使用,如图8所示,共12路脉冲,控制IGBT工作。

qrs5-t8.gif

    模型建立成功后,设置目标环境。打开Simulation>Model Configuration Parameter环境配置,在Solver中设置仿真环境为离散环境,Hardware Implementation>Hardware board设置TI Delfino F2833x目标板,在Code Generation>System target file设置ert.tlc系统文件,Toolchain选择CCS开发环境TI CCSV6 C2000,Interface>Code replacement library设置为TI C28x。代码优化Code Placement>File packaging format设置为Compact,可优化生成代码的逻辑结构,提高代码的可读性。

    以上建模及目标环境配置完成后,按Ctrl+B组合快捷键编译模型,或者在模型工具栏中找到编译工具点击编辑模型,如若模型设计及环境配置无误,即可生成.out执行文件,此文件可由CCS下载到DSP中运行。

    从整个设计过程来看,DSP开发人员只需在MATLAB中进行Simulink模型设计、构建、仿真及目标环境配置,替代了编写、调试DSP代码的复杂过程,减低了出错率,提高了工作效率。

5 系统测试

    本文设计了以TI公司的TMS320F28335为主控芯片的逆变器系统,系统由PC、电源、电源扩展模块、光电隔离模块、核心控制模块、逆变模块等组成。该系统中逆变器结构可从两电平—三电平的结构拓扑,并可以提供逆变器结构性故障全模式,可进行逆变器智能控制及故障诊断技术的研究。

    连接各模块组建实验系统,所有硬件电路接电等待开启。将自动生成的三电平PWM可执行.out文件下载到DSP芯片并运行,开启所有电路电源开关,观测脉冲信号和逆变器输出线电压波形。观测到VT1和VT2的控制脉冲波形如图9所示,与图5仿真结果吻合。

qrs5-t9.gif

    示波器显示波形如图10所示。对比图10与图6,可看出示波器波形与仿真结果完全吻合。

qrs5-t10.gif

6 结论

    针对工作在高频状态下的典型混杂系统——逆变器系统的智能控制及故障诊断的DSP代码开发周期长、效率低、实现比较繁琐的问题,提出基于代码生成技术实现的方法。介绍了代码生成技术及其开发流程,并以三电平PWM代码生成为例展开说明,最后在逆变器实物系统中实现三电平PWM代码的调试。结果证明,该方法简单实用、开发周期短、错误率低、效率有明显提高。为逆变器智能控制及故障检测与诊断算法实践验证提供了方便,具有很高的实用价值。

参考文献

[1] 付玲,帕孜来·马合木提,廖俊勃.三相SPWM逆变器的智能故障诊断研究[J].制造业自动化,2015,37(3):72-74.

[2] 廖俊勃,帕孜来·马合木提,支婵,等.三电平逆变器IGBT的开路故障诊断研究[J].电测与仪表,2015,52(20):35-40.

[3] 廖俊勃.风力发电逆变器的故障诊断研究[D].乌鲁木齐:新疆大学,2015.

[4] 张卿杰,许友,左楠,等.手把手教你学DSP-TMS320-F28335[M].北京:北京航空航天大学出版社,2015.

[5] Texas Instrument,Inc.TMS320F28335/F28334/F28332/F28235/F28234/F28232 digital signal controllers(Rev.M)[Z].2012.

[6] 帕孜来·马合木提,贝太周.三相并网逆变器的键合图模型实现[J].可再生能源,2013,31(1):21-24.

[7] 孙忠潇.Simulink仿真及代码生成技术入门到精通[M].北京:北京航空航天大学出版社,2015.

[8] 刘杰.基于模型的设计及其嵌入式实现[M].北京:北京航空航天大学出版社,2010.

[9] 郭小强,赵刚,黄昆.基于MATLAB/Simulink平台下TI C2000 DSP代码的自动生成[J].科学技术与工程,2011,11(13):2941-2944.

[10] 朱斌,谢杰,孙皓泽,等.基于CCSLink的FIR数字滤波器的DSP实现[J].计算机工程与应用,2013,49(S3):245-249.

[11] MathWorks,Inc..Embedded coder getting started guide[Z].2016.

[12] MathWorks,Inc..Embedded coder user′s guide[Z].2016.

[13] 李永东.现代电力电子学—原理及应用[M].北京:电子工业出版社,2011.

[14] MathWorks,Inc..Getting started with TMS320C28x digital signal controllers(Rev.A)[Z].2007.

[15] MathWorks,Inc..Configuring source of multiple ePWM trip-zone events[Z].2007.



作者信息:

安永军,帕孜来·马合木提

(新疆大学 电气工程学院,新疆 乌鲁木齐830047)

继续阅读>>