| 基于同态加密的AI模型参数安全计算与防泄露方法 | |
| 所属分类:技术论文 | |
| 上传者:wwei | |
| 文档大小:930 K | |
| 标签: 模型参数 隐私保护 同态加密 | |
| 所需积分:0分积分不够怎么办? | |
| 文档介绍:随着人工智能在医疗、金融等敏感领域的广泛应用,模型参数与训练数据的隐私保护成为关键问题。提出一种基于同态加密(HE)的AI模型参数安全计算与防泄露方法,采用CKKS方案在密文空间中实现参数加密、前向推理与梯度更新,避免了训练过程中明文暴露的风险。结果表明,HESGD在MNIST上最高准确率达99.1%;在计算开销上,实现了效率与安全性的平衡,信息泄露风险指数接近0.0。研究表明,该方法在保持模型精度的同时,实现了高效安全计算与近乎零泄露风险,具有较强的应用价值。 | |
| 现在下载 | |
| VIP会员,AET专家下载不扣分;重复下载不扣分,本人上传资源不扣分。 | |
Copyright © 2005-2024 华北计算机系统工程研究所版权所有 京ICP备10017138号-2