《电子技术应用》
您所在的位置:首页 > EDA与制造 > 设计应用 > 非理想运放增益误差的MathCAD定量分析
非理想运放增益误差的MathCAD定量分析
来源:电子技术应用2011年第4期
杨文璐
华中科技大学 光电信息工程学院,湖北 武汉430074
摘要: 在推导非理想运算放大器增益误差表达式的基础上,利用MathCAD分析讨论运算放大器的非理想参数开环增益、输入和输出电阻对实际增益误差的影响,对比现代实际运放与理想运放的差别。结果表明:运放的差模输入电阻和输出电阻对增益误差的影响较小,而开环增益是主要影响因素。开环增益越大,误差越小;目标增益较小,增益误差也较小。对现代运放而言,反馈电阻可以有很大的取值范围,基本不受运放非理想参数的限制。
中图分类号: TN722.7+7
文献标识码: A
文章编号: 0258-7998(2011)04-0064-03
Quantitative analysis of nonideal operational amplifier′s gain error by MathCAD
Yang Wenlu
Huazhong university of science and technology,Wuhan 430074,China
Abstract: On the base of formulating the expression of gain error,the author utilize MathCAD to analyze the real gain error under the influence of nonideal parameters of operational amplifier which include the open-loop gain,input resistance and output resistance and compare the difference between the real operational amplifiers and the ideal ones. The results show:the input and output resistance have minor influence on the gain error,while the open-loop gain is the main factor: the bigger the open-loop gain is, the smaller the gain error is. It has also been proved that minor error can be obtained when the target gain is minor. As for the modern operational amplifier, the value of the feedback resistance can be settled in a wide range and it is hardly restricted by the nonideal parameters.
Key words : operational amplifier;error;nonideal parameters;MathCAD


    运算放大器是重要的电子器件之一,理想的运算放大器具有开环增益Ao无穷大,差模输入电阻Ri无穷大,输出电阻Ro为零的特点。而实际的运算放大器Ao和Ri有限,Ro常为几十欧姆,加之存在失调和温漂等的影响,其实际增益会偏离目标增益。在应用中,常常将实际运放等效为理想运放处理,而对这种等效是否合理、误差到底有多大及如何尽可能减少误差,没有定量的认识。本文希望在分析讨论运放的非理想参数影响的基础上解决这一问题。
    实际运放较理想运放的偏离程度在一些资料中有所介绍,其中戴维德给出了一定反馈网络下,考虑Ao、Ri、Ro非理想运算放大器增益的表达式和相关运算放大电路的设计步骤,强调了使运放增益误差最小的最佳反馈电阻Rf的选取原则[1]; 2001年,张学文等分析了运算放大器的误差,介绍了外围参数的选取[2],其中也谈到了最佳反馈电阻的选取。但物理试验和工程应用中,由于失调电流、运放负载能力、频率响应、单位增益带宽、噪声和电阻标准系列值等的限制,反馈网络电阻的选取并非总能取得使增益误差最小的理论最佳值,为此需要分析非理想参数对增益误差影响的定量规律,从而方便对影响电路性能的重要因素给予优先考虑。
1 非理想运算放大器的增益及误差的理论推导
    以反相放大电路的分析为例。实际运放模型的反相放大电路如图1所示,反馈电阻为Rf,闭环输入电阻为R1,差模输入电阻为 Ri,开环放大倍数为Ao,输出电阻为Ro,输入信号为Vin,输出为Vout。WILLIAM J,HAYT H等给出了其增益的推导[3],方法简述如下:

    根据基尔霍夫电流定理对输入输出两节点列写节点方程:
 

    由图2可以看出,曲面中部有很大的平坦区,其对应增益百分误差近似为零,这就意味着在此反馈电阻和目标增益范围内?滋A741非常接近理想运放;而在平坦区两侧,曲面逐渐升高,对应的增益误差值增大。大约在Rf小于1 kΩ且增益大于500,或Rf大于100 MΩ(工程上推荐10 MΩ以内,是因为偏置电流等其他因素的影响)时误差才开始变得明显,而并非一定要取一个确定的“最佳反馈电阻”[1,2]。为验证本文观点的合理性,将最小增益误差与平坦区其他值所对应的增益误差作比较。由参

    增益百分误差?酌在数个典型目标增益Go下随反馈电阻Rf变化的关系曲线,如图3所示。

    由图3可见,表1所示的最佳反馈电阻落在平坦区域中部,而整个平坦区域的增益误差几乎没有差别,即:对于已选定的运放,若目标增益已定,其理想增益误差已基本确定,且反馈电阻可以在很大范围内取值。
    由图3还可以看出,增益误差对应的平坦区域范围,以及增益误差的大小受目标增益的影响。随着目标增益的增大,增益误差明显变大,平坦区域相应减小。由此可以得到结论:对于反相运算放大电路,若所要求的增益较小,则反馈电阻可在更大范围内取值,且误差更小。
2.2 增益误差与运放参数、反馈电阻的关系
    为研究增益误差与运放参数的关系,需取目标增益为定值,由于目标增益大时增益误差大,为凸显误差,便于观察,不妨假设目标增益值为5 000。以μA741为例,由式(5)、式(6),作出开环增益Ao、输入电阻Ri、输出电阻Ro取值不同时,增益百分误差?酌随反馈电阻变化的曲线,如图4所示。

    由曲线1、2、3可知,影响增益误差的最主要因素是Ao,Ao越大,增益误差越小,反馈电阻取值的范围越大。
    由曲线1、4、5、6可知输入输出电阻对增益误差值影响很小,而对反馈电阻取值范围有一定影响。输入电阻的影响主要体现在反馈电阻很大时,输入电阻越大,平坦区域越宽,误差越小;输出电阻的影响主要体现在反馈电阻很小时,输出电阻越小,平坦区域越宽,误差越小。
2.3 不同运放非理想参数对增益误差影响的比较
    以上分析了典型低成本运放μA741的情况,下面以目前普遍使用的低噪声精密运放Op27为例进行分析。与μA741相比,由于是精密运放,其参数有明显改进,Op27的Ao=1.5×106,Ri=4×106Ω,Ro=70 Ω。采用同样的分析方法,分别作出与图2对应的图5,图3对应的图6。

    比较可知,Op27的性能较μA741有明显的改进,由于其Ao及Ri较大、Ro较小,根据前面的分析,较大的Ao使Op27较μA741有更大的平坦区域以及更小的增益误差。用MathCAD可以计算出Rf在一定范围内取值时Op27与相应的增益误差,如表2所示。

    表2表明Op27较μA741有更大的平坦区域以及更小的增益误差。
    图6可知,目标增益100以内,Rf在很大的平坦区取值时非理想参数导致的误差已小于0.01%。可以推断,随着运放性能的不断提高,在增益不是很大的情况下,只要反馈电阻的值取在平坦区,误差已优于0.01级精密电阻(其制造已十分困难)的误差,也小于接触电阻、热电势、温漂等因素的影响,此时在工程上不必再考虑运放的非理想性,可将其直接视为理想运放考虑。
    本文采用MathCAD作图方法将繁琐的表达式化为简洁的曲线,阐释了相关因素对增益误差的影响:运放的差模输入电阻和输出电阻对增益的影响较小,而开环增益是主要影响因素。开环增益越大误差越小;目标增益较小,增益误差也较小;对现代运放而言,反馈电阻可以有很大的取值范围,基本不受运放非理想参数的限制,无需取特定值就可将误差减小至最小程度。这些规律为设计满足特殊要求的运放电路提供了方便,实际应用中可以优先考虑影响设计目标的主要因素,这就大大提高了参数选取的灵活性和可操作性。
参考文献
[1] 戴维德.运算放大器电路设计手册[M].北京:人民邮电出版社,1983:119-131.
[2] 张学文,邹梅.集成运算放大电路的误差分析及外围元件参数的选择[J].湖北师范学院学报,2001,21(2):53-56.
[3] HAYT H,WILLIAM J,JACK E K,et al.工程电路分析[M]. 北京:电子工业出版社,2002:140-142.
[4] 思索.Mathcad 7.0实用教材[M].北京:人民邮电出版社,1998.

此内容为AET网站原创,未经授权禁止转载。