《电子技术应用》

基于认知OFDM系统的功率分配算法

来源:电子技术应用2012年第4期
宋延涛, 杨守义, 宋玙薇, 齐 林
((郑州大学 信息工程学院,河南 郑州450001))
摘要: 在正交频分复用的认知无线电系统中,授权用户会受到认知用户频带内子载波带外功率泄漏的干扰。针对这一问题,提出了一种基于幂函数分布的次优化功率分配方案,通过线性约束的凸优化数值运算,有效降低了最优方案中运算的复杂度。给出了在认知用户发射功率约束条件下的信道吞吐量分析。仿真结果表明,所提出的方案在满足授权用户干扰门限约束条件下,提高了现有功率分配方案的认知用户信道吞吐量。

Abstract:

摘  要: 在正交频分复用的认知无线电系统中,授权用户会受到认知用户频带内子载波带外功率泄漏的干扰。针对这一问题,提出了一种基于幂函数分布的次优化功率分配方案,通过线性约束的凸优化数值运算,有效降低了最优方案中运算的复杂度。给出了在认知用户发射功率约束条件下的信道吞吐量分析。仿真结果表明,所提出的方案在满足授权用户干扰门限约束条件下,提高了现有功率分配方案的认知用户信道吞吐量。
关键词: 功率分配; OFDM; 认知无线电; 幂函数

    在传统的无线通信系统中,频谱分配制度为固定频谱分配。为避免干扰,各国政府无线电管理部门对无线电频谱资源进行统一的宏观管理,通过给不同系统颁发无线电频谱使用牌照的形式来为其分配特定的频段,将频谱分为授权频段(LFB)和非授权频段(UFB)两个部分。随着无线通信技术的飞速发展,固定无线电频谱分配虽然避免了不同系统间的干扰,却带来了极低的频谱利用率和频谱资源匮乏问题,已经成为制约无线通信技术的主要瓶颈之一[1]。因此,美国联邦通信委员会和其他频谱管理机构考虑在已有的授权频谱中引入其他的用户,且不会对授权频带内的用户造成不可接受的干扰,即实现机会频谱接入OSA(Opportunistic Spectrum Access)技术[2]。
    MITOLA等人在软件无线电SR(Software Radio)技术的基础上提出了认知无线电CR(Cognitive Radio)技术[3]。CR技术作为一种新兴的无线通信系统,旨在对空、时、频等各域上的空闲资源(亦称为“频谱空洞”或“白色空间”)进行有效的感知探测和合理的再利用[4],在授权频带内主要用户通常被称为授权用户LU(License User)和所有其他的用户称为非授权用户或认知用户CU(Cognitive User)。其主要作用是在不影响LU正常通信的前提下,寻找频谱机会进行CU间的有效通信,可以说认知无线电技术是目前解决频谱资源匮乏的最有效方法[5]。
    正交频分复用(OFDM)技术具有便于自适应调整的参数和可重配的子载波结构,其接收端的快速离散Fourier变换模块也可同时用于频谱感知,抗多径干扰与频率选择性衰落能力强,频谱利用率高等优点,这些优点使得OFDM成为实现CR系统的理想备选技术之一[6]。利用OFDM技术,认知用户能够灵活地填补授权用户留下的频谱空白,功率分配不仅是传统OFDM系统中的关键技术,而且还是认知无线电技术中频谱分析和判决的重要手段,在认知网络中链路容量最大化同样也要深化功率分配的研究。


    由(8)式可知,CU频带中第i个子载波被分配的功率,有可能出现小于零的情况,因此这里采取迭代分块注水(IPW)算法进行分析处理,经过多次迭代运算,直至CU频带中每个子载波所分配的功率是非负值为止[9]。
3.2 次优功率分配方案

 


    在次优功率分配方案中,需要将CU频带内的子载波序号如图1所示,这里取N为偶数;当N取奇数时,也有类似表达。基于参考文献[7]提出的次优化方案A和方案B,本文提出了基于幂指数分布的方案C和方案D。
3.2.1 方案C
    该方案考虑CU频带内功率分配,随着CU频带中子载波与LU频段之间频谱距离的增加,子载波分配的功率成幂函数阶梯状分布,假设第i个子载波分配的功率为:

    图5给出了在CU发射总功率约束的条件下,不同干扰门限值下各种不同方案的CU信道吞吐量。可以看出,在干扰门限值达到一定值时,各种方案的信道吞吐量均趋于一个定值。

    同时,还应该看到,不再有某一特定方案在所有干扰功率门限值上优于其他次优分配方案来趋近最优方案。LU干扰功率门限值在0.4 μW~0.64 μW之间时,方案D的认知用户信道吞吐量最接近最优方案;LU干扰功率门限值在0.64 μW~1.24 μW之间时,方案B最接近最优方案;LU干扰功率门限值在大于1.24 μW时,方案A最接近最优方案。在CU发射总功率受约束的情况下,CU信道最大吞吐量不再依据某种特定的方案来趋近最优方案。因此,在此情况下,不能再选择某一特定方案来最大化信道吞吐量,而是应该在确定LU干扰功率门限值(或门限区间)的前提下选择次优化功率分配方案来进行功率分配。
    本文研究了基于OFDM的认知无线电系统的功率分配问题。针对最优化功率分配方案运算复杂程度较高的问题,提出了基于幂函数分布的次优化功率分配方案,并与参考文献[7]中提到的次优化功率分配方案进行了对比,本文提出的方案优于参考文献[7]提出的次优方案。最后还分析在CU发射总功率约束下的信道吞吐量,随着LU所能承受干扰约束值的增加,CU信道吞吐量趋于一个定值。在认知用户发射总功率约束的情况下,应采用不同次优方案来进行功率分配,以满足最大认知用户信道吞吐量最大化的要求。
参考文献
[1] Federal communications commission spectrum policy task  force[R]. FCC Report of the Spectrum Efficiency Working Group, November 2002.
[2] ZHAO Q, SADLER B. A survey of dynamic spectrum access: signal processing, networking, and regulatory policy [J]. IEEE Signal Processing Magazine, 2007,55(5):2294-2309.
[3] MITOLA J. Cognitive radio: making software radios more personal [J]. IEEE Personal Communications, 1999,6(4):13-18.
[4] SVENSSON C. Software defined radio-vision or reality[C]. 24th Nor chip Conference, Nov, 2006:149-149.
[5] AKYILDIZ I F, LEE W, VURAN M C,et al. Next generation, dynamic spectrum access, cognitive radio wireless  networks, a survey[J].Computer Networks,2006(24):2127-2159.
[6] WEISS T, JONDRAL T, Spectrum pooling: an innovative strategy for the enhancement of spectrum efficiency[J].IEEE  Communications Magazine, 2004,42(3):S8-S14.
[7] BANSAL G, HOSSAIN M J, BHARGAVA V K. Adaptive power loading for OFDM-based cognitive radio systems[C]. Proc IEEE ICC[S]. IEEE Press, 2007:5137-5142.
[8] WEISS T, HILLENBRAND J, KROHN A, et al. Mutual in terference in OFDM-based spectrum pooling systems[C]. Proc IEEE Vehicular Technology Conference Spring, IEEE Press, 2004:1873-1877.
[9] WANG P, ZHAO M, XIAO L,et al. Power allocation in OFDM-based cognitive radio systems[C].Proc IEEE Global Communication Conference, Washington DC, IEEE Press, 2007:4061-4065.

继续阅读>>