《电子技术应用》
您所在的位置:首页 > 电源技术 > 设计应用 > 基于模糊PID的静变电源控制技术研究
基于模糊PID的静变电源控制技术研究
来源:电子技术应用2012年第6期
樊 波,牛江川,程培源,吴家梁
空军工程大学 导弹学院,陕西 三原713800
摘要: 为提高静变电源输出电压的质量,研究了一种自整定模糊PID控制方法。该方法将模糊控制优良的动态性能、灵活的控制特性和PID稳态控制性能的优势相结合,实时地对系统控制量进行调整。在Matlab/Simulink环境下,对于模糊PID和常规PID在静变电源控制中的应用分别进行了仿真。仿真结果表明,模糊PID控制器减少了超调量,抗干扰性和鲁棒性强,系统的动态、稳态性能得到了很大程度的提高。
中图分类号: TM464
文献标识码: A
文章编号: 0258-7998(2012)06-0072-04
The researching of fuzzy PID controller in static inverter
Fan Bo,Niu Jiangchuan,Cheng Peiyuan,Wu Jialiang
The Missile College, Air Force Engineering University, Sanyuan 713800,China
Abstract: This article proposed the Fuzzy PID controller plan to increase the quality of the single phase static inverter output voltage, this plan has both fuzzy control good dynamic performance control of flexible and steady performance advantages of PID control, so it can improve the performance of the system, real-time makes the online adjustment to the system control measures. Based on Matlab/Simulink, the system was simulated under the circumstance of the static inverter. Compared with the PID control, the analysis of the fuzzy PID controller simulation results showed that the overshoot was reduced, the quality of anti-interference and robust were enhanced, the dynamic performance of the system has greatly improved, and its steady performance is also better.
Key words : static inverter;fuzzy PID control;simulation

   近年来,随着电力电子技术的发展,静变电源越来越广泛地应用于工业、军事、医疗、航空航天等领域。在某型地空导弹武器系统中,静变电源是主要的设备之一,是整个武器系统电能的来源,能否可靠不间断地供电直接影响武器系统性能的发挥。设计高性能变频电源是当前的趋势之一,静变电源的高性能主要表现在稳压性能好、输出电压波形质量高、负载适应性强、动态特性好等方面。为了获得高质量的正弦输出电压波形,人们将现代控制理论应用到静变电源系统的控制中,提出了很多基于调制策略的控制方法。

    PID控制器结构简单,鲁棒性强,目前在很多方面都有着广泛的应用。但是随着科学技术的进步,被控对象变得越来越复杂,利用传统的PID控制器往往得不到较好的控制效果。为了改善常规PID的控制效果,增强系统的适应性,本文设计出一种调整系统控制量的模糊PID控制器,模糊控制对于克服系统的非线性、时变性具有一定的优势。本文结合静变电源控制系统的特点,采用模糊PID控制算法,提高了静变电源输出电压波形的质量,使系统兼具良好的动、静态性能。



    增量式PID控制器参数一经确定后就不再改变,参数没有自适应环境变化的能力。然而,在实际工业生产过程中,静变电源的输出电压具有非线性、时变性和不确定性,而且所带负载常常发生变化,使得控制对象和模型失配,传统PID控制器参数往往优化不良,控制效果欠佳。为了克服传统PID控制系统的缺陷,引入了模糊控制与PID控制相结合的方法,以改善系统的跟踪效果,获得期望输出。
1.2 模糊PID控制策略
    根据以往经验,静变电源输出电压波形质量与调制波信号密切相关,当输出电压波动很大时,如采用常规的PID控制器,其控制性能可能会变差甚至不稳定。因此,为了实现控制器的自适应能力,提出了基于模糊PID算法的静变电源的直接电压控制方法。
    静变电源的模糊PID控制原理如图1所示,将期望值与实际输出值的误差信号经过模糊PID调节后,分析误差信号产生调制波,再经三角载波调制后生成PWM信号控制逆变桥,使系统输出信号逼近期望值,模糊PID控制原理如图2所示。

    模糊控制器的实现首先应定义输入输出变量的模糊集,确定各变量论域,建立模糊变量赋值表,即模糊化;然后根据实践和学习积累的经验,归纳出若干条控制规则,根据控制规则进行模糊推理,采用最大隶属度法,对输出加以清晰化处理。
1.2.1 模糊化
    单相逆变电源采用二维模糊控制,需要考虑的论域有三个:输出电压偏差、偏差变化率以及控制量,选取电压偏差、偏差变化率作为输入。其中:

1.2.2 模糊控制的隶属函数和控制规则的确定
    模糊控制规则应根据系统期望的动、静态特性来确定,即当偏差较大时,控制系统的主要任务是消除偏差。此时,偏差的权系数应较大;而当偏差较小时,为了减小超调,并使系统尽快稳定,主要应根据偏差变化率来改变控制量,此时,要求加大偏差变化率的权重。下面说明模糊控制规则表的制定。
   (1)根据以往在控制过程中的实践经验加以总结,可得到数条模糊条件语句的集合。将偏差和偏差变化率的语言变量值各分为7个等级,可以总结出7×7=49条模糊条件语句,具体描述如下:
    if E=PB and EC=NB then U=ZO
    if E=PB and EC=NM then U=ZO
    if E=PB and EC=NS then U=NS
    if E=PB and EC=ZO then U=NM
    if E=PB and EC=PS then U=NB
    ……
  (2)根据以往的经验知识和反复的实验,采用三角形隶属函数形式,可以得到如图3所示的偏差e、偏差变化率ec以及控制量U的隶属度函数。据此确定对应论域中起作用的控制规则,并制定如表1所示的模糊控制状态表。


1.2.3 解模糊与模糊PID控制器的实现
    在本设计中,利用CRI法则推理时控制过程是用查询控制规则表来产生控制量的,对误差信号e和误差变化率ec论域中全部元素的所有组合进行计算,便可计算出模糊控制量的输出U,并采用最大隶属度的规则进行模糊决策,将U经过清晰化转换成相应的确定量。通过查表得到的输出控制量,还需乘上比例因子Ku,即得到调制波。
    设计该模糊PID控制器的特点是根据输入在最大偏差范围内,利用模糊推理的方法调整系统的控制量,而在最小偏差范围内转换成PID控制,两者的转换根据事先给定的偏差范围自动实现,以实现系统控制量的自动调整。
2 系统仿真结果分析
    根据以上分析在Matlab/Simulink7.1环境下,建立控制模型。其中,采样周期T取0.001;经验证误差基本论域取[-35,35],误差变化率基本论域取[-5,5],控制输出量基本论域取[-40,40],经推理模糊化因子ke=0.2,ke=0.02,kU=6.5;PID的参数Kp=1.2、Ki=10、Kd=0.000 5;开关频率为3 kHz,输入交流电压为380 V;交流负载电压220 V/50 Hz,120 000 kVA,输出滤波电容、电感分别为3 mH、5 000 μF;输出变压器参数380 V/120 V,250 000 kVA。
    在电路仿真过程中,分别用普通PID和模糊PID控制对静变电源实施控制,开关阈值选为5 V,3个电压表分别测量与之对应的单相输出电压,仿真时间为0.5 s,仿真结果如图4所示。

    根据仿真结果,静变电源从启动到电压稳定时,模糊PID控制效果明显比PID控制效果要好,而且在0.2 s突加负载、0.3 s断开负载时的电压能很快地恢复稳定;PID控制在突加和断开负载时电压波动大,恢复稳定所需时间长。由此可见,模糊PID控制静变电源的策略,兼具了模糊控制的动态特性和PID控制的稳态性能,使系统的稳态性、超调量得到了较大改善,提高了系统的响应速度和控制精度。
    本文将模糊推理算法引入PID控制器中,解决了PID控制器在非线性系统中的收敛速度慢和误差精度低的难题。通过仿真实验,模糊PID控制器在线控制静变电源,其鲁棒性和自适应能力较强,对于干扰也有较好的抑制调节能力,满足了对静变电源输出的要求。整个系统的仿真结果验证了模糊PID控制算法应用于静变电源的正确性和可行性。
参考文献
[1] 李士勇.模糊控制·神经网络控制和智能控制论[M].哈尔滨:哈尔滨工业大学出版社,1996.
[2] 王兆安,黄俊.电力电子技术[M].北京:机械工业出版社,2000.
[3] 张国良,曾静,柯熙政,等.模糊控制及其MATLAB应用[M].西安:西安交通大学出版社,2002.
[4] Yang Hongjun.Researching on an automatically leveling control system based on Fuzzy-PID[C].The eighth nations experiment with measure colloquium.2009:2619-2622.
[5] 郝少杰,方康玲.基于模糊PID参数子整定的温度控制系统的研究[J].现代电子技术,2011(4):196-204.
[6] 张开如,陈荣,孙鸿昌,等.计算机仿真技术在电力电子电路与系统分析中的应用[J].计算机仿真,2003,20(5):97-99.

此内容为AET网站原创,未经授权禁止转载。