《电子技术应用》
您所在的位置:首页 > 微波|射频 > 设计应用 > 残留频差对自适应阵列天线的影响
残留频差对自适应阵列天线的影响
来源:电子技术应用2012年第12期
曾 浩1,2, 何海丹1, 张 云1, 任燕飞1
1. 中电集团第十研究所, 四川 成都 610036; 2. 电子科技大学, 四川 成都610036
摘要: 自适应阵列天线可以通过数字下变频实现信号正交化,把中频数字信号转换到零中频,然后进行加权求和。分析了变频过程中因没有进行载波同步所导致的残留频差对自适应阵列天线算法的影响。通过详细的理论分析表明,只要上、下变频采用相同本振,残留频差对算法并没有影响,即使对带通采样系统,该结论同样成立。对频谱、阵列增益的仿真证明了理论分析的正确性。
中图分类号: TN820
文献标识码: A
文章编号: 0258-7998(2012)12-0105-04
The impact of residual frequency offset in adaptive array antenna
Zeng Hao1,2, He Haidan1, Zhang Yun1, Ren Yanfei1
1. CETC-10, Chengdu 610036, China; 2. University of Electronic Science and Technology of China, Chengdu 610036, China
Abstract: The digital down conversion(DDC) plays the role to alter the real signal into analytical signal. This process could generate zeros intermedia frequency signal,by which the digital beamforming(DBF) is implemented. However, the residual frequency offset exists in the DDC output, since carrier wave synchronization is not employed. It is proved by theoretic analysis that the frequency offset has no impact to the adaptive filtering algorithm if the same local oscillators are taken for DDC and digital up conversion(DUC). This result also keeps even for the system with bandpass sampling theorem. Finally, the simulation of spectrum and array gain show the conclusions are right.
Key words : adaptive array antenna; frequency conversion; residual frequency offset

    自适应阵列天线利用期望和干扰的不同空间来向,通过空域自适应滤波,把天线方向图主瓣对准期望信号,零陷对准干扰,最终抑制干扰,提高系统输出信干噪比SINR(Signal-to-Interference-Noise Ratio)。目前自适应滤波算法包括了各种盲算法和非盲算法[1],同时,针对复杂系统的波束合成也有相关研究,例如,多用户无线通信系统、协同通信网络、频率选择性衰落环境等[2-4]。但任何算法都需要首先通过正交变换,把阵元接收的实信号转换为复信号。基本的变换方法包括抽取滤波、Hilbert变换[5]以及正交数字下变频。采用数字下变频方式实现正交化时,由于未进行载波同步,必然存在残留频差。该残留频差会对自适应滤波算法存在影响,如何克服这种影响,是工程实现过程中需要解决的问题。

1 中频信号模型
    目前的软件无线电接收机,由于器件性能的限制,无法实现射频直接采样[6],所以,中频数字化的超外差结构是普遍采用的方案。自适应阵列天线作为单独功能模块,其数字信号处理模块位于ADC之后,对于单个通道,输入期望信号s0(t)是频率为fIF,带宽为Bs的中频信号,输出也是相同频率的中频信号。在采用数字调制情况下,中频信号可以表示为:
 

    对于下变频模块,输出同相和正交支路分别对应复基带信号的实部和虚部。由于变频对噪声统计特性没有

 



    比较式(30)与式(19),二者相等。所以,此时分析方法和结论与2.2节是相同的。
3 仿真
    仿真采用8阵元均匀线阵,阵元间距为载波半波长,采用QPSK调制,其中频频率为70 MHz,带宽为10 MHz,信噪比为10 dB,入射角度为60°。同时,存在一个同频的点频干扰信号,为了便于图中观察,采用较小干噪比3 dB,入射角度150°。系统采样率为100 MHz,而且进行带通采样。
    图3为阵列接收中频信号频谱,由于100 MHz带通采样,所以30 MHz和70 MHz都有信号。频谱中,干扰叠加在载波频率位置,为单谱线。

    在窄带的自适应阵列天线的设计中,可以采用正交变换获得中频输入信号的解析信号。即使输出零中频信号存在残留频差,只要上下变频采用相同本振,该残留频差不会对抗干扰产生影响。即使在带通采样情况下,结论也相同。
参考文献
[1] BELLOFIORE S, FOUTZ J, BALANIS C A, et al. Smartantenna system for mobile communication networks, Part 2: Beamforming and network throughput[J]. IEEE antennas and  propagation magazine, 2002,44(4):106-114.
[2] CHEOL J, MIN K I, DONG K I. Joint secure beamforming design at the source and the relay for an amplify-and-forward MIMO untrusted relay system[J]. IEEE transactions  on signal processing, 2012, 60(1): 310-325.
[3] ILLSOO S, LEE S H, ANDREWS J G. Belief propagation  for distributed downlink beamforming in cooperative MIMO cellular networks[J]. IEEE transactions on wireless communications, 2011, 10(12): 4140-4149.
[4] AMIN O. Adaptive power loading for multi-relay OFDM  regenerative networks with relay selection[J]. IEEE transaction on communications, 2012,60(3):614-619.
[5] Pei Soochang, Wang Penghua, Lin Chiahuei. Design of  fractional delay filter, differeintegratior, fractional Hilbert  transformer, and differentiator in time domain with Peano kernel[J]. IEEE transactions on circuits and systems I:regular papers, 2010,57(2):391-404
[6] ULVERSOY T. Software defined radio:challenges and opportunities[J]. IEEE communications surveys and tutorials,  2010, 12(4): 531-550
[7] DENNIS A M, MICHAEL S, JAMES B Y, et al. Direct bandpass sampling of multiple distinct RF signals[J]. IEEE transactions on communications, 1999,47(7):983-988.
[8] VAN TREES H L. Optimum array processing[M]. Hoboken, USA:John Wiley & Sons. Inc., 2002:27-50.
[9] KIM S J, MAGNANI A, MUTAPCIC A, et al. Robust  beamforming via worst-case SINR maximization[J]. IEEE transactions on signal processing, 2008,56(4):1539-1547.
[10] LINN Y. Robust M-PSK phase detectors for carrier synchronization PLLs in coherent receivers: theory and simulations[J].IEEE transactions on communications,2009,57(6):1794-1805.

此内容为AET网站原创,未经授权禁止转载。