《电子技术应用》
您所在的位置:首页 > 通信与网络 > 设计应用 > 基于知识图谱和协同过滤算法的多头注意力网络
基于知识图谱和协同过滤算法的多头注意力网络
电子技术应用
康永玲1,2,3
1.中国煤炭科工集团 太原研究院有限公司;2.山西天地煤机装备有限公司;3.煤矿采掘机械装备国家工程实验室
摘要: 当前基于知识图谱的推荐方法大多聚焦于知识关联的编码机制,往往忽视了用户-物品交互中潜在的关键协同信号,导致现有模型学习到的嵌入向量无法有效地表达用户和物品在向量空间中的潜在语义。为解决这一问题,提出一种融合知识图谱和协同过滤的多头注意力网络——协同知识感知多头注意力网络(CKAN-MH)。该网络在传统的CKAN模型的基础上引入多头注意力机制,以自适应地关注不同特征的子集,通过动态调整注意力权重,对尾实体进行差异化加权处理。引入多头注意力机制后,模型能够更全面地捕捉数据中隐含的复杂关系与模式,进而显著提升推荐系统的性能表现。此外,还在三个真实数据集上应用CKAN-MH模型进行实验评估。实验结果表明,CKAN-MH模型在性能上优于当前多个主流先进基线模型,验证了该模型的有效性和优越性。
中图分类号:TN0 文献标志码:A DOI: 10.16157/j.issn.0258-7998.256532
中文引用格式: 康永玲. 基于知识图谱和协同过滤算法的多头注意力网络[J]. 电子技术应用,2025,51(8):60-64.
英文引用格式: Kang Yongling. Multi-head attention network based on knowledge graph and collaborative filtering algorithm[J]. Application of Electronic Technique,2025,51(8):60-64.
Multi-head attention network based on knowledge graph and collaborative filtering algorithm
Kang Yongling1,2,3
1.CCTEG Taiyuan Research Institute Co., Ltd.;2.Shanxi Tiandi Coal Mining Machinery Co., Ltd.;3.China National Engineering Laboratory for Coal Mining Machinery
Abstract: Most current recommendation methods based on knowledge graphs focus on the encoding mechanism of knowledge associations, often neglecting the potential key collaborative signals in user-item interactions. This leads to the learned embedding vectors of existing models being unable to effectively represent the latent semantics of users and items in the vector space. To address this issue, this paper proposes a multi-head attention network that integrates knowledge graphs and collaborative filtering - the collaborative knowledge-aware multi-head attention network (CKAN-MH). This network introduces a multi-head attention mechanism on the basis of the traditional CKAN model to adaptively focus on different subsets of features and perform differential weighting of tail entities by dynamically adjusting attention weights. After introducing the multi-head attention mechanism, the model can more comprehensively capture the complex relationships and patterns hidden in the data, thereby significantly improving the performance of the recommendation system. Additionally, we conducted experimental evaluations on three real datasets using the CKAN-MH model. The experimental results show that the CKAN-MH model outperforms several current mainstream advanced baseline models in terms of performance, verifying the effectiveness and superiority of this model.
Key words : recommendation system;knowledge graph;collaborative filtering;multi-head attention network

引言

随着信息化时代的到来以及海量数据的涌现,用户越来越难以从庞大的数据信息中快速获取所需物品,为解决这一问题,推荐系统开始成为研究热点。现有的基于知识图谱的推荐模型主要是GraphRec模型[1]、PippleNet模型[2]和NGCF模型[3]等,其存在一个较大的问题是在面对同一头实体时,不同的关系会产生不同的尾实体。故存在某两个实体在一种关系上相似度很高,在其他关系上相似度较低的情况,如果只依据某一种关系进行推荐时,有可能影响推荐效果。

为更好解决上述问题,本文提出一种基于知识图谱和协同过滤多头注意力网络:协同知识感知多头注意力网络(CKAN-MH),通过增强知识图谱的表征学习性能来提高模型推荐能力。


本文详细内容请下载:

https://www.chinaaet.com/resource/share/2000006630


作者信息:

康永玲1,2,3

(1.中国煤炭科工集团 太原研究院有限公司,山西 太原 030006;

2.山西天地煤机装备有限公司,山西 太原 030006;

3.煤矿采掘机械装备国家工程实验室,山西 太原 030006)


Magazine.Subscription.jpg

此内容为AET网站原创,未经授权禁止转载。