《电子技术应用》
您所在的位置:首页 > 嵌入式技术 > 业界动态 > 基于FPGA的USB2.0控制器设计

基于FPGA的USB2.0控制器设计

2008-10-28
作者:罗玉平 陈海涛 施业斌 尹社广

  摘  要: 介绍了一种用VHDL设计USB2.0功能控制器的方法,详述了其原理和设计思想,并在FPGA上予以实现。   

  关键词: USB  VHDL  FPGA 

 

  在视频存储和图像宽带领域中,经常遇到实时高速数据传输的要求。2000年4月,由Intel、Microsoft、NEC、Compaq、Lucent、Phillips等公司共同制订的USB2.0(Universal Serial Bus)传输协议,其速度远远超过了目前使用IEEE1394接口进行视频传输的400Mbps,达到了480Mbps:而且具有即插即用PnP(Plug And Play)、可进行菊花链式的级联(通过USB HUB进行外围扩展)、可串连多达127个USB设备等优点。应用该协议可支持实时语音、音频和视频数据" title="视频数据">视频数据的传输。 

  本文针对高速数据传输需求,根据USB2.0的协议规范,利用VHDL语言实现符合该协议的功能控制器,在视频压解系统中使数据在PC与外设之间高速传输。如图1所示由视频A/D采集的原始视频数据,在Philips公司生产的TM1300专用视频处理器中压缩后,通过USB控制器送至PC机。PC机的数据通过USB控制器传输到TM1300,解压后发送至视频D/A。 

 

 

1 控制器结构原理 

  USB2.0控制器结构框图如图2所示。控制器主要由两个部分组成,其一为与外设的接口,另一个是内部协议层逻辑PL(Protocol Layer)。内部存储器仲裁器实现对内部DMA和外部总线对存储器访问之间的仲裁。PL则实现USB的数据I/O和控制。 

 

 

  接口有三种:一种是与微控制器" title="微控制器">微控制器之间的功能接口;一种是与单口同步静态存储器(SSRAM)之间的接口;另外一种是与物理层之间的接口。这里符合UTMI(USB Transceiver Macrocell Interface)规范定义。 

2 控制器实现  

  控制器接口的信号框图如图3所示。存储器采用标准的单口SRAM,其信号接口由32位数据线SRAM_DATA、15位地址线SRAM_ADDR及读写信号(SRAM_WE和SRAM_RD)组成,系统所需SRAM的容量为215×32bit=128KB。

 

 

  而与微控制器之间的接口信号包括32位数据线DATA、18位地址线ADDR以及DMA请求和响应信号(DMA_REQ和DMA_ACK)。由于要支持到128KB,需要17位地址线,另外还需要一根地址线来选通SSRAM和USB控制器内部的寄存器,总共需要18根地址线addr[17:0]。定义如下: 

    USB_RF_SEL <= addr[17]; 

    USB_MEM_SEL <= addr[17]; 

  第18位地址addr[17]为高时选择缓冲存储器,否则选择内部寄存器。地址addr[16:2]直接用于存储器SSRAM的地址。 

2.1 UTMI接口 

  UTMI接口信号包括:与发送数据相关的信号(TxValid、TxReady等),与接收数据相关的信号(RxActive、RxValid、RxError等)以及16位双向数据线。 

  在物理层,该控制器需要一个外部的USB收发器" title="收发器">收发器(Transceiver),本文采用的是Philips公司的ISP1501芯片。该芯片用作USB2.0的模拟前端,从USB电缆来的差分信号进行反转不归零码(NRZI)解码和位解填充转换成16位并行数据;反之,16位并行数据通过一个差分驱动电路经过串行化、位填充和NRZI编码输出到USB电缆上。ISP1501通过管脚MODE0和MODE1决定收发器的工作模式,共有4种工作模式:MODE[1:0]为“00”时,收发器处于断开状态;为“01”时处于全速(Full Speed)模式(此时USB带宽为12Mb/s);为“10”时是高速(High Speed)模式(此时USB最大" title="最大">最大带宽是480Mb/s);为“11”时是HS chirp模式。 

  UTMI接口通过译码MODE[1:0]来控制ISP1501在HS和FS之间转变。

    If mode_hs='1' then   

         MODE<='10' 

    Elsif mode_hs='0' then   

         MODE<='01' 

    End if; 

2.2 协议层 

  控制器的核心逻辑位于PL(Protocol Layer)模块,负责管理所有USB数据I/O和控制通信,其结构如图4所示。 

 

 

  DMA和存储器接口提供随机存储器访问和DMA操作。该模块使PL和外部微控制器采用DMA方式访问SSRAM。当外部总线有访问SRAM的请求时,且PL没有请求访问存储器,控制逻辑如下:req、ack分别对应外部总线和存储器之间的请求和响应信号,din、addr和we分别是外部总线给出的数据、地址和写信号,mreq是内部DMA向存储器发送的请求信号,mdin、maddr和mwe分别是内部DMA给出的数据、地址和写信号。 

    sel <= (req OR ack_r) AND (NOT mreq); 

    if sel='1' then  

        sram_out<=din; 

         sram_adr<=addr; 

         sram_we <= req AND we; 

    else 

        sram_out<=mdin; 

        sram_adr<=maddr; 

        sram_we <= mwe; 

    end if; 

  由控制逻辑可看出,内部DMA操作的优先级比外部总线高。 

  协议引擎(Protocol Engine)处理所有标准的USB握手信号和控制通信。分组组装器组装分组并送入输出FIFO,先组装分组头,插入适当的PID(分组标识)和校验和,然后加入数据域。分组拆装器先解码出PID和序列号以及校验和,再从8位PID取低4位(或高4位取反)得到PID[3:0],通过USB2.0协议的PID类型定义译码出PID名,判断是Token分组(OUT、IN、SOF和SETUP)还是DATA分组(DATA0、DATA1、DATA2和MDATA)。 

  Pid_Token<=pid_OUT OR pid_IN OR pid_SOF OR pid_SETUP; 

  Pid_DATA<= pid_DATA OR pid_DATA1 OR pid_DATA2 OR pid_MDATA; 

  如果是Token分组(格式定义如图5所示),则将后续的16bit数据分别放入两个8bit临时Token寄存器token0和token1,然后取出分组中的7位地址、4位端点号及5位CRC5校验码。 

 

 

  Token_fadr<=token0[6:0]; 

  Token_endp<=token1[2:0] & token0[7]; 

  Token_crc5<=token1[7:3]; 

  对于特殊的Token须进行特殊的处理,本文实现的控制器只对SOF这一特殊Token进行操作,解出PID后的11位帧号及5位CRC5校验码。 

  Frame_no<=token1[2:0] & token0; 

  Token_crc5<=token1[7:3]; 

  检验校验码是否出错,如果出错等待下一个Token,否则将地址、端点号和帧号等放入相应寄存器。Token类型如果是IN,则执行组装分组并发送分组;如果是OUT则拆卸接收到的数据分组。对于其他不支持的Token则视为错误处理:Pid_ERROR<= pid_ACK OR pid_NACK OR pid_STALL OR pid_NYET OR pid_PRE OR pid_ERR OR pid_SPLIT OR pid_PING;如果出错则不进行Token的解码,而等待下一个Token的到来。 

  如果是DATA分组,则紧接着PID的是最大载荷为1024字节的数据和16位CRC16校验码。对数据的处理先写入端点寄存器,然后通过DMA操作写入SSRAM。下面详细介绍端点寄存器和DMA操作。 

2.3 端点操作 

  数据的传输实际上通过端点(Endpoint)进行,控制器通过写端点的寄存器来配置端点,该控制器最多可有16个端点,每个端点有相应的4个寄存器:Epn_CSR、Epn_INT、Epn_BUF0和Epn_BUF1(这里n=0、1、2或3),其格式如图6所示。本文使用addr[8:2]7根地址线来访问这些寄存器,addr[8:4]用来选择端点号,其值(16进制)从4到19分别代表Epn(n=0...15)。addr[3:2]指定寄存器类型:“00”代表CSR(Control Status Register);“01”代表中断寄存器;“10”指向Buffer0;“11”代表Buffer1。这两个Buffer用来作临时数据存储,Buffer0和Buffer1分别作为专用的输入/输出缓冲器来提高USB的数据吞吐能力。双Buffer能够减少微控制器和驱动软件之间的延迟。其中端点的CSR寄存器指定端点的工作模式并且向控制器报告指定端点的状态。Ep_CSR[31:30]必须初始化为“00”(最初使用Buffer0),通过读这2位可以知道下次所要处理的缓冲器;为“01”时,指定Buffer1。Ep_CSR[27:26]和Ep_CSR[25:24]分别指定端点类型和传输类型,其类型编码参见表1。Ep_CSR[21:18]指定端点号,总共可以有16个端点。Ep_CSR[15]时DMA使能位,为“1”时允许外部DMA操作,否则不允许DMA操作。

 

 

 

  当控制器收到中断时,读中断源" title="中断源">中断源寄存器(Ep_INT[6:0])来判断中断源和产生的原因。可自定义中断源,如Ep_INT[2]定义为该控制器接收到不支持的PID而产生的中断:Ep_INT[2]<=Pid_ERROR。Ep_INT[4]和Ep_INT[3]分别表示Buffer1和Buffer0的满或空的状态位。 

  Ep_BUF[31](标记缓冲器是否被使用过)在使用后被控制器置“1”,在清空或重填充该缓冲器后,控制器清除该位。该位初始化时为“0”。Ep_BUF[30:17]指定缓冲器能容纳的字节数。Ep_BUF[16:0]是缓冲器的指针,装载存储器SRAM中数据的地址。 

  控制端点(Endpoint0)比较特殊,由于它既要接收也要发送数据,因此对于控制端点,Buffer0用于OUT缓冲器,Buffer1则是IN缓冲器。从SETUP和OUT分组来的数据,写入Buffer0,IN分组的数据则是从Buffer1中获取。 

2.4 DMA操作 

  DMA操作允许控制器与功能接口之间数据的透明传输。一旦设置了DMA操作,则不需要微控制器的干预。每个端点有一对DMA_REQ和DMA_ACK信号。当CSR寄存器中DMA使能信号位(Ep_CSR[15])被置位时,USB控制器使用DMA_REQ和DMA_ACK这两个信号来进行DMA的流控制。当缓冲区有数据或为空需要填充时发送DMA请求信号DMA_REQ,每传输4字节,响应一个DMA_ACK信号。 

  由于USB2.0协议定义的事务操作以8bit为单位,因此完成一次32bit的DMA操作需要进行4次写8bit。内部DMA采用高效的One-hot状态机设计方法,状态转换如图7所示。当需要将接收到的数据存储到SRAM(rx_dma_en=1)时进入WAIT_MRD状态,在该状态选中一个临时数据寄存器,并向存储器发送请求信号mreq,从存储器中预取4字节(当接收到的数据少于4字节时,保证有4字节的数据写入存储器)到该寄存器中,然后进入MEM_WR状态。当PL的分组拆装器接收到1字节数据时,将该字节写入临时存储器,转入下一状态MEM_WR1;当分组拆装器没有数据给DMA仲裁器时则进入MEM_WR2状态,在此状态将临时存储器中的数据写入SRAM,然后回到IDLE状态。在操作过程中,使用计数器adr_cb对传输字节数进行计数,通过adr_cb[1:0]的值标识当前传输的是32bit中的哪个字节。计数器sizu_c每接收1字节数值加1。 

 

 

  在需要读取SRAM中的数据(tx_dma_en=1)时,DMA仲裁器由IDLE状态进入MEM_RD1状态,读取4字节数据到发送缓冲区中,然后进入状态MEM_RD2,再读4字节进入状态MEM_RD3,这8字节轮流使用Buffer0和Buffer1缓冲区:   

    if ((NOT adr_cb[2]) AND  mack) 

       then Buffer0<=SRAM_DATA_I; 

    elsif (adr_cb[2]  AND  mack) 

       then Buffer1<=SRAM_DATA_I; 

    end if;    

    在MEM_RD3状态判断是否还需要读下一个数据,如果需要再进入状态MEM_RD2,否则在传输完所有字节后,返回到IDLE状态。在发送数据过程中,使用14bit计数器sizd_c决定传输字节数,取自Ep_BUF[30:17],每发送1字节数据,它的值减1。在图7中的各个状态中,由于超时、CRC校验错误或得到的数据发生错误时,PE产生的Abort信号会使当前状态都回到IDLE。 

    文中阐述了USB2.0功能控制器的一种实现方案。其VHDL语言实现代码,已在XILINX公司的FPGA Virtex XCV300-6fg456中通过了Xilinx ISE的仿真、综合及布局布线。FPGA的规模是32万门,1536个CLB(可配置逻辑单元)。该控制模块占用2050个Slice(66%),使用了1697个Slice触发器(27%)和3047个4输入LUT表(49%)。整个FPGA的速度可达到56.870MHz,完全满足视频数据的高速传输(对32bit数据操作,达到480Mb/s的速度时钟只需15MHz)。该方案实现的控制器便于修改且易于实现,可作为一个功能模块嵌入到SOC中,可使不同情况最大限度地灵活设计片上系统。 

参考文献 

1 Universal Serial Bus Specification Revision 2.0. 2000;4 

2 USB Function IP Core Rev.1.5. Rudolf Usselmann. 2002;1 

3 USB 2.0 Transceiver Macrocell Interface Specification Version 1.05. 2001; 3 

4 Xilinx, Inc., ISE 4 User Guide, 2001 

5 ISP1501 Data Sheet. Philips Semiconductors, 2000; 7

本站内容除特别声明的原创文章之外,转载内容只为传递更多信息,并不代表本网站赞同其观点。转载的所有的文章、图片、音/视频文件等资料的版权归版权所有权人所有。本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如涉及作品内容、版权和其它问题,请及时通过电子邮件或电话通知我们,以便迅速采取适当措施,避免给双方造成不必要的经济损失。联系电话:010-82306118;邮箱:aet@chinaaet.com。