《电子技术应用》

用双端口RAM实现与PCI总线接口数据通讯

摘要: 提出了一种使用CPLD解决双端口RAM地址译码和PCI接口芯片局部总线仲裁的的硬件设计方案,并给出了PCI总线接口芯片寄存器配置实例,介绍了软件包WinDriver开发设备驱动程序的具体过程。随着计算机技术的不断发展,为满足外设间以及外设与主机间的高速数据传输,Intel公司于1991年提出了PCI总线概念。PCI总线是一种能为主CPU及外设提供高性能数据通讯的总线,其局部总线在33MHz总线时钟、32位数据通路时,数据传输速率最高可达133Mbps。实际应用中,可通过PCI总线实现主机与外部设备的高速数据传输,有效解决数据的实时传输和存储问题,为信号的实时处理打下良好基础。本文主要提供一种基于PCI总线的数据传输系统设计方案,其中双口RAM起桥梁作用,完成上位机与外围主控单元之间的数据握手。1双端口RAM实现PCI总线接口方案本系统主要用于解决上位机与外围控制单元的数据传输问题。上位机运行信息诊断程序,通过PCI总线与外围控制单元以一定速率传输数据,在主机中实时监控并保存数据。由于实现高速实时数据传输,数据量大,所以在PCI局部总线上插入一个高速双端口RAM。双端口RAM一端作为PCI总线接口的本地端存储器

Abstract:

  提出了一种使用CPLD解决双端口RAM地址译码和PCI接口芯片局部总线仲裁的的硬件设计方案,并给出了PCI总线接口芯片寄存器配置实例,介绍了软件包WinDriver开发设备驱动程序的具体过程。

  随着计算机技术的不断发展,为满足外设间以及外设与主机间的高速数据传输,Intel公司于1991年提出了PCI总线概念。PCI总线是一种能为主CPU及外设提供高性能数据通讯的总线,其局部总线在33MHz总线时钟、32位数据通路时,数据传输速率最高可达133Mbps。实际应用中,可通过PCI总线实现主机与外部设备的高速数据传输,有效解决数据的实时传输和存储问题,为信号的实时处理打下良好基础。

  本文主要提供一种基于PCI总线的数据传输系统设计方案,其中双口RAM起桥梁作用,完成上位机与外围主控单元之间的数据握手。

  1 双端口RAM实现PCI总线接口方案

  本系统主要用于解决上位机与外围控制单元的数据传输问题。上位机运行信息诊断程序,通过PCI总线与外围控制单元以一定速率传输数据,在主机中实时监控并保存数据。由于实现高速实时数据传输,数据量大,所以在PCI局部总线上插入一个高速双端口RAM。双端口RAM一端作为PCI总线接口的本地端存储器,一端作为DSP目标存储器。需要传输保存的数据经DSP处理后借助双端口RAM和PCI总线接口完成了上位机与DSP的数据握手。本文提出的双端口RAM实现PCI总线接口方案如图1。

  考虑到PCI总线接口对局部总线的控制时序比较复杂,需要译码和控制电路来实现局部总线的访问及控制。本系统使用CPLD解决双口RAM的地址访问竞争冲突问题。需解决的主要问题有:①PCI接口电路设计;②CPLD地址译码和总线仲裁;③PCI总线驱动程序开发。

  2 PCI接口电路设计

  PCI卡的设计一般采用两种方案。一种是根据PCI协议在FPGA或CPLD中实现PCI总线接口控制器,但是由于PCI协议的复杂性,使得开发难度大、周期长;另一种使用现成的PCI接口芯片,用户开发难度降低,只把重点放在PCI接口芯片局部总线的接口设计和PCI总线配置空间的初始化,而不用速度考虑PCI总线规范上众多的协议规范,加快了开发时间。

  本数据传输系统使用PLX公司的PCI9030总线接口芯片,以CPLD完成逻辑控制及与外设的连接,整个系统的硬件框图如图2。其中双端口RAM采用IDT71V321,CPLD选用XILINX公司的XC9536CPLD芯片,EEPROM选用NS公司的93CS56,控制单元DSP选用TMS320LF2407A。

<Script type=text/javascript>function ImgZoom(Id)//重新设置图片大小 防止撑破表格 { var w = $(Id).width; var m = 650; if(w< m){return;} else{ var h = $(Id).height; $(Id).height = parseInt(h*m/w); $(Id).width = m; } } window.onload = function() { var Imgs = $("content").getElementsByTagName("img"); var i=0; for(;i

      2.1PCI9030内部结构及其数据传输

  PCI9030是PLX公司开发的PCI总线目标接口芯片。其特点:低功耗,PQFP176针封装,符合PCIV2.2规范;在PCI总线上是从设备,但在局部总线上是主设备;PCI9030支持突发传输,有5个PCI总线到局部总线地址空间,9个可编程的通用I/O,4个可编程的片选,支持热插拔。PCI 9030主要由PCI总线接口逻辑、局部总线接口逻辑、串行E2PROM接口逻辑和内部逻辑组成,结构框图见图3。

  PCI9030支持PCI主设备直接访问局部总线上的设备,数据传输方式分为内存映射的突发传输和I/O映射的单次传输,并且由PCI基址寄存器设置在PCI内存和I/O空间中的合适位置,另外局部映射寄存器允许PCI地址空间转换到局部地址空间。

  2.2配置实例

  系统访问的双口RAM存储空间为2KB,要求将这个存储器空间映射到局部地址空间0,采用内存方式映射,存储器的数据宽度为8位,并且不采用突发传输,读写时不可预取。下面介绍这个地址空间各个寄存器的具体配置过程。

  (1)配置地址范围寄存器

  根据PCI配置寄存器与LAS0RR的对应关系以及双口RAM的地址空间800H,取7FFH的补码得到FFFFF800H。又因为按照设计要求,要映射到内存空间的任何位置并且设置为不可预取的,这样LASORR寄存器后3位应该为000H。所以LAS0RR的值应该最终确定为FFFFF800H。

  (2)配置基址寄存器

  该寄存器的基址必须是地址空间范围的整数倍,在本例中必须是2K的整数倍,可将基地址定为00004000H,又由于基址寄存器位0为空间使能位,所以应将这一位设置1;至于位2、位3,由于是映射到内存空间,设为00H即可。所以LAS0BA的值最终被确定为00004001H。

  (3)配置片选信号控制寄存器

  该寄存器的地址范围和基地址必须与LAS0RR或LAS0BA所定义的范围和空间相对应。可根据PCI9030提供的配置寄存器的方法确定CS0BASE的数值:板卡的2KB空间可以用十六进制表示为800H,将800H右移一位得到400H,然后将基地址加到400H左边的任何一位中。因为所采用的基地址为00004000H,所以得到的值为00004400H;又因为第1位为片选使能位,应该设置为1。所以最终确定的数值为00004401H。

  由于局部总线采用8位的宽度,将工作方式定义在不使能突发,不预取,配置总线区域描述寄存器的数值确定为400140A2H。另外,还要根据要求设置CNTRL寄存器控制PCI9030的工作状态,确定为18784500H。当所有这些数据都配置完成后,便可将这些数据按照加载顺序写入串行E2PROM中,从而完成整个系统的配置。

  通过这几个寄存器的配置,一个局部地址空间便可以确定下来。在系统上电后,系统BIOS根据这几个寄存器的内容将板卡上2KB的RAM空间重映射到PCI空间中,使主机可以像访问自己的地址空间一样访问板卡上的RAM。

2.3CPLD控制逻辑

  对于双口RAM同一个地址单元,不能同时进行读或写操作,但两边连接的主控芯片,都可以对其进行读、写操作,因此必须解决地址竞争问题。本系统中,使用XILINX公司的XC9536CPLD芯片完成PCI局部总线的译码和控制电路。由于系统控制计算主要在DSP中完成,上位机只起监控和数据保存作用,因此规定对双口RAM的操作DSP优先于PCI9030;同时CPLD也参与了DSP片外程序存储器Flash和数据存储器RAM的地址译码,控制逻辑用公式表示为:

  3设备驱动程序设计

  设备驱动程序开发工具通常有DDK、VtoolsD、WinDrvr等。为加快开发速度,采用JUNDO公司的WinDrvr开发设备驱动程序。其使用简单,支持多种操作系统。

  采用Windrvr开发PCI桥接设备的驱动程序有两种方法。一种Wizard开发向导是自动生成驱动程序框架代码,然后根据实际需要,加入定制功能。这种方法生成的代码较多,程序较复杂。另一种是在Vc++创建工程中直接利用Windrvr的API函数生成驱动程序,比在Wizard生成的框架代码上修改更为灵活。本文采用后一种方法。以下是用Windrvr开发PCI9030桥芯片的驱动代码,只要稍加改动就可以作为其他PCI芯片驱动程序的一部分,例如PCI9050、PCI9052等。程序中出现的变量名都由其名称反映含义,具体可以参见Windrvr设计文档说明。

  至此获得了本地端映射到用户的内存地址,调用读写函数就可以对本地芯片进行操作。

继续阅读>>