| 基于改进FP-growth的多品类打包推荐算法 | |
| 所属分类:技术论文 | |
| 上传者:wwei | |
| 文档大小:1427 K | |
| 标签: 多品类打包 推荐系统 关联规则挖掘 | |
| 所需积分:0分积分不够怎么办? | |
| 文档介绍:多品类打包推荐是现代推荐系统中的重要任务,旨在通过组合不同类别的产品,向用户进行一站式推荐,以满足用户的多样化需求并提升用户体验。目前,该任务面临即时响应需求高、数据规模庞大、数据稀疏性高等挑战,现有打包算法难以应对。为解决上述问题,提出了一种基于改进FP-growth算法的多品类打包推荐算法,即在FP-growth算法的基础上,对产品属性间的关联关系进行挖掘,并根据属性关联规则匹配出符合度最高的打包产品,有效缓解了产品间的数据稀疏性问题。在基于航空旅游零售领域的数据集上,本方法相较于基准方法显著提高了打包质量和打包效率。 | |
| 现在下载 | |
| VIP会员,AET专家下载不扣分;重复下载不扣分,本人上传资源不扣分。 | |
Copyright © 2005-2024 华北计算机系统工程研究所版权所有 京ICP备10017138号-2