《电子技术应用》
您所在的位置:首页 > 微波|射频 > 业界动态 > 氮化镓半导体材料在5G时代的应用前景

氮化镓半导体材料在5G时代的应用前景

2019-08-11

  氮化镓,分子式为GaN,是研制微电子器件、光电子器件的新型半导体材料,并与SiC、金刚石等半导体材料一起,被誉为是继第一代Ge、Si半导体材料、第二代GaAs、InP化合物半导体材料之后的第三代半导体材料。

20190524091236-6369428595607186971110616.png

  GaN和SiC同属于第三代高大禁带宽度的半导体材料,和第一代的Si以及第二代GaAs相比,其在特性上优势突出。由于禁带宽度大、导热率高,GaN器件可在200℃以上的高温下工作,能够承载更高的能量密度,可靠性更高;较大禁带宽度和绝缘破坏电场,使得器件导通电阻减少,有利于提升器件的能效;电子饱和速度快,以及较高的载流子迁移率,可让器件高速地工作。

  5G商用到来,射频氮化镓技术必不可少

  射频氮化镓技术是5G的绝配,基站功放使用氮化镓。随着全球移动数据流量的不断增长,各移动运营商正在竭尽全力满足爆炸式增长的流量需求。通过载波聚合可以缓解移动互联网对于数据带宽的需求,载波聚合和大规模多入多出技术促使基站去采用性能更好的功放。基站中以前采用的射频功放主要基于LDMOS技术,但LDMOS技术的极限频率不超过3.5GHz,也不能满足视频应用所需的300MHz以上带宽。

  因为上述原因,基站开始采用射频氮化镓器件来替代LDMOS器件。LDMOS器件物理上已经遇到极限,这就是氮化镓器件进入市场的原因。基站应用需要更高的峰值功率、更宽的带宽以及更高的频率,这些因素都促成了基站接受氮化镓器件。

  GaN可以实现更高的功率密度,对于既定功率水平,GaN具有体积小的优势。有了更小的器件,就可以减小器件电容,从而使得较高带宽系统的设计变得更加轻松。氮化镓作为一种宽禁带半导体,可承受更高的工作电压,意味着其功率密度及可工作温度更高,因而具有高功率密度、低能耗、适合高频率、支持宽带宽等特点。

  快充类手机需求旺盛

  随着电子产品的屏幕越来越大,充电器的功率也随之增大,尤其是对于大功率的快充充电器,使用传统的功率开关无法改变充电器的现状。而GaN技术可以做到,因为它是目前全球最快的功率开关器件,并且可以在高速开关的情况下仍保持高效率水平,能够应用于更小的元件,应用于充电器时可以有效缩小产品尺寸,比如使目前的典型45W适配器设计可以采用25W或更小的外形设计。氮化镓充电器可谓吸引了全球眼球,高速高频高效让大功率USB PD充电器不再是庞大笨重,小巧的体积一样可以实现大功率输出。

  据统计,许多主流的手机厂商都已将USB PD快充协议纳入到了手机的充电配置。USB PD快充的手机已经多达52款型号和覆盖15个品牌,其中不乏苹果、华为、小米、三星等一线大厂品牌。USB PD快充将成为目前手机、游戏机、笔记本电脑等电子设备的首选充电方案。

  现下,5G商用,消费类电源快充快速普及,氮化镓在这些领域都有着较为广阔的应用前景,氮化镓未来可期。


本站内容除特别声明的原创文章之外,转载内容只为传递更多信息,并不代表本网站赞同其观点。转载的所有的文章、图片、音/视频文件等资料的版权归版权所有权人所有。本站采用的非本站原创文章及图片等内容无法一一联系确认版权者。如涉及作品内容、版权和其它问题,请及时通过电子邮件或电话通知我们,以便迅速采取适当措施,避免给双方造成不必要的经济损失。联系电话:010-82306118;邮箱:aet@chinaaet.com。